2 research outputs found

    Review: Ischemia Reperfusion Injury?A Translational Perspective in Organ Transplantation

    Get PDF
    Thanks to the development of new, more potent and selective immunosuppressive drugs together with advances in surgical techniques, organ transplantation has emerged from an experimental surgery over fifty years ago to being the treatment of choice for many end-stage organ diseases, with over 139,000 organ transplants performed worldwide in 2019. Inherent to the transplantation procedure is the fact that the donor organ is subjected to blood flow cessation and ischemia during harvesting, which is followed by preservation and reperfusion of the organ once transplanted into the recipient. Consequently, ischemia/reperfusion induces a significant injury to the graft with activation of the immune response in the recipient and deleterious effect on the graft. The purpose of this review is to discuss and shed new light on the pathways involved in ischemia/reperfusion injury (IRI) that act at different stages during the donation process, surgery, and immediate post-transplant period. Here, we present strategies that combine various treatments targeted at different mechanistic pathways during several time points to prevent graft loss secondary to the inflammation caused by IRI

    The TLR4-MyD88 Signaling Axis Regulates Lung Monocyte Differentiation Pathways in Response to Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is the main cause of bacterial pneumonia, a condition that currently produces significant global morbidity and mortality. The initial immune response to this bacterium occurs when the innate system recognizes common motifs expressed by many pathogens, events driven by pattern recognition receptors like the Toll-like family receptors (TLRs). In this study, lung myeloid-cell populations responsible for the innate immune response (IIR) against S. pneumoniae, and their dependence on the TLR4-signaling axis, were analyzed in TLR4–/– and Myeloid-Differentiation factor-88 deficient (MyD88–/–) mice. Neutrophils and monocyte-derived cells were recruited in infected mice 3-days post-infection. Compared to wild-type mice, there was an increased bacterial load in both these deficient mouse strains and an altered IIR, although TLR4–/– mice were more susceptible to bacterial infection. These mice also developed fewer alveolar macrophages, weaker neutrophil infiltration, less Ly6Chigh monocyte differentiation and a disrupted classical and non-classical monocyte profile. The pro-inflammatory cytokine profile (CXCL1, TNF-α, IL-6, and IL-1β) was also severely affected by the lack of TLR4 and no induction of Th1 was observed in these mice. The respiratory burst (ROS production) after infection was profoundly dampened in TLR4–/– and MyD88–/– mice. These data demonstrate the complex dynamics of myeloid populations and a key role of the TLR4-signaling axis in the IIR to S. pneumoniae, which involves both the MyD88 and TRIF (Toll/IL-1R domain-containing adaptor-inducing IFN-β) dependent pathways.This work was supported by grants of Ministerio de Ciencia SAF 2015-70880-R, RTI 2018-099114-B-100, BIO 2017-82951-R, and ISCIII PI14CIII/00049.S
    corecore