21 research outputs found

    Fructose effects on human health: Molecular insights from experimental models

    Get PDF
    Podeu consultar el llibre complet a: http://hdl.handle.net/2445/63704Global changes in dietary habits in the last decades caused an increase of added sugar consumption all over the world, which has been linked to the increasing prevalence of obesity, dyslipidemia, insulin resistance and cardiovascular disease. Fructose is widely used as a sweetener in the food and beverage industry, either as an integrant of the sucrose molecule or as a component of high fructose corn syrups. The consumption of fructose in beverages is especially dangerous, as the process of energy compensation by reduction in the ingestion of other foods does not work equally well with liquid than solid foods. Besides, fructose is the carbohydrate with the highest ability to induce hypertriglyceridemia, due to a marked increase in lipogenesis compared with glucose. In this review we will discuss some of the most recent studies performed in animal models and in humans to investigate the effects of excessive fructose consumption

    Liquid fructose downregulates SIRT1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells

    Get PDF
    Fructose ingestion is associated with the production of hepatic steatosis and hypertriglyceridemia. For fructose to attain these effects in rats, simultaneous induction of fatty acid synthesis and inhibition of fatty acid oxidation is required. We aimed to determine the mechanism involved in the inhibition of fatty acid oxidation by fructose and whether this effect occurs also in human liver cells. Female rats were supplemented or not with liquid fructose (10% w/v) for 7 or 14 days; rat (FaO) and human (HepG2) hepatoma cells, and human hepatocytes were incubated with fructose 25 mM for 24 h. The expression and activity of the enzymes and transcription factors relating to fatty acid β-oxidation were evaluated. Fructose inhibited the activity of fatty acid β-oxidation only in livers of 14-day fructose-supplemented rats, as well as the expression and activity of peroxisome proliferator activated receptor α (PPARα). Similar results were observed in FaO and HepG2 cells and human hepatocytes. PPARα downregulation was not due to an osmotic effect or to an increase in protein-phosphatase 2A activity caused by fructose. Rather, it was related to increased content in liver of inactive and acetylated peroxisome proliferator activated receptor gamma coactivator 1α, due to a reduction in sirtuin 1 expression and activity. In conclusion, fructose inhibits liver fatty acid oxidation by reducing PPARα expression and activity, both in rat and human liver cells, by a mechanism involving sirtuin 1 down-regulation

    Impairment of Novel Object Recognition Memory and Brain Insulin Signaling in Fructose- but Not Glucose-Drinking Female Rats

    Get PDF
    Excessive sugar intake has been related to cognitive alterations, but it remains unclear whether these effects are related exclusively to increased energy intake, and the molecular mechanisms involved are not fully understood. We supplemented Sprague-Dawley female rats with 10% w/v fructose in drinking water or with isocaloric glucose solution for 7 months. Cognitive function was assessed through the Morris water maze (MWM) and the novel object recognition (NOR) tests. Plasma parameters and protein/mRNA expression in the frontal cortex and hippocampus were determined. Results showed that only fructose-supplemented rats displayed postprandial and fasting hypertriglyceridemia (1.4 and 1.9-fold, p < 0.05) and a significant reduction in the discrimination index in the NOR test, whereas the results of the MWM test showed no differences between groups. Fructose-drinking rats displayed an abnormal glucose tolerance test and impaired insulin signaling in the frontal cortex, as revealed by significant reductions in insulin receptor substrate-2 protein levels (0.77-fold, p < 0.05) and Akt phosphorylation (0.72-fold, p < 0.05), and increased insulin-degrading enzyme levels (1.86-fold, p < 0.001). Fructose supplementation reduced the expression of antioxidant enzymes and altered the amount of proteins involved in mitochondrial fusion/fission in the frontal cortex. In conclusion, cognitive deficits induced by chronic liquid fructose consumption are not exclusively related to increased caloric intake and are correlated with hypertriglyceridemia, impaired insulin signaling, increased oxidative stress and altered mitochondrial dynamics, especially in the frontal cortex

    Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues

    Get PDF
    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months' supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake

    KHK, PNPLA3 and PPAR as Novel Targets for the Anti-Steatotic Action of Bempedoic Acid

    Full text link
    Bempedoic acid (BemA) is an ATP-citrate lyase (ACLY) inhibitor used to treat hypercholesterolemia. We studied the anti-steatotic effect of BemA, and the mechanisms involved, in a model of fatty liver in female rats obtained through the administration of a high-fat diet supplemented with liquid fructose (HFHFr) for three months. In the third month, a group of rats was treated with BemA (30 mg/kg/day) by gavage. Plasma analytes, liver histology, adiposity, and the expression of key genes controlling fatty acid metabolism were determined, and PPAR agonism was explored by using luciferase reporter assays. Our results showed that, compared to HFHFr, BemA-treated rats exhibited lower body weight, higher liver/body weight, and reduced hepatic steatosis. In addition to ACLY inhibition, we found three novel mechanisms that could account for the anti-steatotic effect: (1) reduction of liver ketohexokinase, leading to lower fructose intake and reduced de novo lipogenesis; (2) increased expression of patatin-like phospholipase domain-containing protein 3, a protein related to the export of liver triglycerides to blood; and (3) PPARα agonist activity, leading to increased hepatic fatty acid β-oxidation. In conclusion, BemA may represent a novel approach to treat hepatic steatosis, and therefore to avoid progression to advanced stages of non-alcoholic fatty liver disease

    Adipose Tissue Protects against Hepatic Steatosis in Male Rats Fed a High-Fat Diet plus Liquid Fructose: Sex-Related Differences

    Full text link
    Non-alcoholic fatty liver disease is a sexual dimorphic disease, with adipose tissue playing an essential role. Our previous work showed that female rats fed a high-fat high-fructose diet devoid of cholesterol (HFHFr) developed simple hepatic steatosis dissociated from obesity. This study assessed the impact of the HFHFr diet on the male rat metabolism compared with data obtained for female rats. A total of 16 Sprague Dawley (SD) male rats were fed either a control (standard rodent chow and water) or HFHFr (high-fat diet devoid of cholesterol, plus 10% fructose in drinking water) diet for 3 months. Unlike female rats, and despite similar increases in energy consumption, HFHFr males showed increased adiposity and hyperleptinemia. The expression of hormone-sensitive lipase in the subcutaneous white adipose tissue was enhanced, leading to high free fatty acid and glycerol serum levels. HFHFr males presented hypertriglyceridemia, but not hepatic steatosis, partially due to enhanced liver PPARα-related fatty acid β-oxidation and the VLDL-promoting effect of leptin. In conclusion, the SD rats showed a sex-related dimorphic response to the HFHFr diet. Contrary to previous results for HFHFr female rats, the male rats were able to expand the adipose tissue, increase fatty acid catabolism, or export it as VLDL, avoiding liver lipid deposition. Keywords: adipose tissue; fructose; high-fat diet; leptin; non-esterified fatty acids

    Oleate Reverses Palmitate-induced Insulin Resistance and Inflammation in Skeletal Muscle Cells

    Get PDF
    Here we report that in skeletal muscle cells the contribution to insulin resistance and inflammation of two common dietary long-chain fatty acids depends on the channeling of these lipids to distinct cellular metabolic fates. Exposure of cells to the saturated fatty acid palmitate led to enhanced diacylglycerol levels and the consequent activation of the protein kinase C theta/nuclear factor kappa B pathway, finally resulting in enhanced interleukin 6 secretion and down-regulation of the expression of genes involved in the control of the oxidative capacity of skeletal muscle (peroxisome proliferator-activated receptor (PPAR)gamma-coactivator 1 alpha) and triglyceride synthesis (acyl-coenzyme A: diacylglycerol acyltransferase 2). In contrast, exposure to the monounsaturated fatty acid oleate did not lead to these changes. Interestingly, co-incubation of cells with palmitate and oleate reversed both inflammation and impairment of insulin signaling by channeling palmitate into triglycerides and by up-regulating the expression of genes involved in mitochondrial beta-oxidation, thus reducing its incorporation into diacylglycerol. Our findings support a model of cellular lipid metabolism in which oleate protects against palmitate-induced inflammation and insulin resistance in skeletal muscle cells by promoting triglyceride accumulation and mitochondrial beta-oxidation through PPAR alpha- and protein kinase A-dependent mechanisms

    Chronic liquid fructose supplementation does not cause liver tumorigenesis but elicits clear sex differences in the metabolic response in Sprague-Dawley rats

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) has increased over the last decades and may evolve into hepatocellular carcinoma (HCC). As HCC is challenging to treat, knowledge on the modifiable risk factors for NAFLD/HCC (e.g. hyper caloric diets rich in fructose) is essential. Objective and design: We used a model of diethyl nitrosamine-induced hepatocarcinogenesis to investigate the liver cancer-promoting effects of a diet supplemented with 10% liquid fructose, administered to male and female rats for 11 months. A subset of the fructose-supplemented rats received resveratrol (RVT) in the last 4 months of treatment. Results and discussion: Rat livers showed no de visu or histological evidence of liver tumorigenesis. However, we observed metabolic abnormalities that could be related to cancer development mainly in the female fructose-supplemented rats, such as increases in weight, adiposity and hepatic triglyceride levels, as well as hyperglycaemia, hyperuricemia, hyperleptinemia and a reduced insulin sensitivity index, which were partially reversed by RVT. Therefore, we performed a targeted analysis of 84 cancer-related genes in the female liver samples, which revealed expression changes associated with cancer-related pathways. Analysis of individual genes indicated that some changes increased the risk of hepatocarcinogenesis (Sfrp2, Ccl5, Socs3, and Gstp1), while others exerted a protective/preventive effect (Bcl2 and Cdh1). Conclusion: Our data clearly demonstrate that chronic fructose supplementation, as the sole dietary intervention, does not cause HCC development in rats. Keywords: diethyl nitrosamine; hepatocellular cancer; metabolic syndrome; sugar-sweetened beverages; sugary drinks

    Bempedoic acid as a PPARα activator: new perspectives for hepatic steatosis treatment in a female rat experimental model

    No full text
    La enfermedad del hígado graso no alcohólico cursa, en sus fases iniciales, con hipertrigliceridemia y acúmulo de lípidos en el hígado (esteatosis hepática). El ácido bempedoico es un inhibidor de la ATP:citrato liasa que promueve una inhibición dual de la síntesis de colesterol y ácidos grasos. Sin embargo, no se ha investigado su efecto en la prevención/tratamiento de la esteatosis hepática y la hipertrigliceridemia. El objetivo de nuestro trabajo ha sido elucidar si el ácido bempedoico, mediante un mecanismo diferente/alternativo a la inhibición de la ATP:citrato liasa, revierte estas alteraciones metabólicas. Diseño experimental El estudio se realizó con un modelo animal de rata Sprague-Dawley hembra alimentada, durante 3 meses, con una dieta rica en grasa saturada suplementada con fructosa al 10% (p/v) en el agua de bebida. Se administró, durante el último mes, ácido bempedoico (30 mg/kg/día) a un grupo de animales. Se analizaron parámetros zoométricos, se realizaron valoraciones plasmáticas, de expresión génica y proteica en muestras de hígado y se determinó la actividad de unión PPAR-PPRE. Resultados Nuestro modelo de intervención dietética desarrolló esteatosis hepática e hipertrigliceridemia. A pesar de un aumento en la ingesta calórica total, no se observó un incremento de peso corporal de los animales. La administración de ácido bempedoico redujo significativamente la esteatosis hepática y promovió una marcada hipertrofia de los hepatocitos
    corecore