11 research outputs found

    Distinct Microglial Responses in Two Transgenic Murine Models of TAU Pathology

    Get PDF
    Microglial cells are crucial players in the pathological process of neurodegenerative diseases, such as Alzheimer’s disease (AD). Microglial response in AD has been principally studied in relation to amyloid-beta pathology but, comparatively, little is known about inflammatory processes associated to tau pathology. In the hippocampus of AD patients, where tau pathology is more prominent than amyloid-beta pathology, a microglial degenerative process has been reported. In this work, we have directly compared the microglial response in two different transgenic tau mouse models: ThyTau22 and P301S. Surprisingly, these two models showed important differences in the microglial profile and tau pathology. Where ThyTau22 hippocampus manifested mild microglial activation, P301S mice exhibited a strong microglial response in parallel with high phospho-tau accumulation. This differential phospho-tau expression could account for the different microglial response in these two tau strains. However, soluble (S1) fractions from ThyTau22 hippocampus presented relatively high content of soluble phospho-tau (AT8-positive) and were highly toxic for microglial cells in vitro, whereas the correspondent S1 fractions from P301S mice displayed low soluble phosphotau levels and were not toxic for microglial cells. Therefore, not only the expression levels but the aggregation of phospho-tau should differ between both models. In fact, most of tau forms in the P301S mice were aggregated and, in consequence, forming insoluble tau species.We conclude that different factors as tau mutations, accumulation, phosphorylation, and/or aggregation could account for the distinct microglial responses observed in these two tau models. For this reason, deciphering the molecular nature of toxic tau species for microglial cells might be a promising therapeutic approach in order to restore the deficient immunological protection observed in AD hippocampus.CIBERNEDJunta de Andalucía. Consejería de Economía, Innovación, Ciencia y Empleo CTS-2035Fundación Tatiana Pérez de Guzmán el BuenoMinisterio de Ciencia, Innovación y UniversidadesInstituto de Salud Carlos III. Fondo de Investigación Sanitaria. PI15/00957 PI15/00796Fondo Europeo de Desarrollo Regional PI15/00957 PI15/0079

    Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer's disease

    Get PDF
    Reactive astrogliosis, a complex process characterized by cell hypertrophy and upregulation ofcomponents of intermediate filaments, is a common feature in brains of Alzheimer’s patients. Reac-tive astrocytes are found in close association with neuritic plaques; however, the precise role ofthese glial cells in disease pathogenesis is unknown. In this study, using immunohistochemical tech-niques and light and electron microscopy, we report that plaque-associated reactive astrocytesenwrap, engulf and may digest presynaptic dystrophies in the hippocampus of amyloid precursorprotein/presenilin-1 (APP/PS1) mice. Microglia, the brain phagocytic population, was apparentlynot engaged in this clearance. Phagocytic reactive astrocytes were present in 35% and 67% ofamyloid plaques at 6 and 12 months of age, respectively. The proportion of engulfed dystrophicneurites was low, around 7% of total dystrophies around plaques at both ages. This fact, alongwith the accumulation of dystrophic neurites during disease course, suggests that the efficiency ofthe astrocyte phagocytic process might be limited or impaired. Reactive astrocytes surroundingand engulfing dystrophic neurites were also detected in the hippocampus of Alzheimer’spatientsby confocal and ultrastructural analysis. We posit that the phagocytic activity of reactive astrocytesmight contribute to clear dysfunctional synapses or synaptic debris, thereby restoring impairedneural circuits and reducing the inflammatory impact of damaged neuronal parts and/or limitingthe amyloid pathology. Therefore, potentiation of the phagocytic properties of reactive astrocytesmay represent a potential therapy in Alzheimer s disease.Fondo de Investigación Sanitaria (FIS). Instituto de Salud Carlos III (ISCiii) de España y fondos FEDER de la Unión Europea. PI15/00796 y PI15/00957Fundación La Marató-TV3 de Cataluña, España. 20141432, 20141431, 20141433, y 20141430Centro de investigación en red de enfermedades neurodegenerativas (CIBERNED) de España. PI2015-2/02Junta de Andalucía. Proyecto de Excelencia CTS-203

    Should we open fire on microglia? Depletion models as tools to elucidate microglial role in health and alzheimer’s disease

    Get PDF
    Microglia play a critical role in both homeostasis and disease, displaying a wide variety in terms of density, functional markers and transcriptomic profiles along the different brain regions as well as under injury or pathological conditions, such as Alzheimer’s disease (AD). The generation of reliable models to study into a dysfunctional microglia context could provide new knowledge towards the contribution of these cells in AD. In this work, we included an overview of different microglial depletion approaches. We also reported unpublished data from our genetic microglial depletion model, Cx3cr1CreER /Csf1rflx/flx, in which we temporally controlled microglia depletion by either intraperitoneal (acute model) or oral (chronic model) tamoxifen administration. Our results reported a clear microglial repopulation, then pointing out that our model would mimic a context of microglial replacement instead of microglial dysfunction. Next, we evaluated the origin and pattern of microglial repopulation. Additionally, we also reviewed previous works assessing the effects of microglial depletion in the progression of Aβ and Tau pathologies, where controversial data are found, probably due to the heterogeneous and time-varying microglial phenotypes observed in AD. Despite that, microglial depletion represents a promising tool to assess microglial role in AD and design therapeutic strategies.La Marato-TV3 Foundation 20141432, 20141431Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas CB06/05/0094, CB06/05/1116Junta de Andalucía US-1262734, UMA18-FEDERJA-211, P18-RT-223

    Disruption of Amyloid Plaques Integrity Affects the Soluble Oligomers Content from Alzheimer Disease Brains

    Get PDF
    The implication of soluble Abeta in the Alzheimer's disease (AD) pathology is currently accepted. In fact, the content of soluble extracellular Abeta species, such as monomeric and/or oligomeric Abeta, seems to correlate with the clinicopathological dysfunction observed in AD patients. However, the nature (monomeric, dimeric or other oligomers), the relative abundance, and the origin (extra-/intraneuronal or plaque-associated), of these soluble species are actually under debate. In this work we have characterized the soluble (defined as soluble in Trisbuffered saline after ultracentrifugation) Abeta, obtained from hippocampal samples of Braak II, Braak III-IV and Braak V-VI patients. Although the content of both Abeta40 and Abeta42 peptides displayed significant increase with pathology progression, our results demonstrated the presence of low, pg/mg protein, amount of both peptides. This low content could explain the absence (or below detection limits) of soluble Abeta peptides detected by western blots or by immunoprecipitation-western blot analysis. These data were in clear contrast to those published recently by different groups. Aiming to explain the reasons that determine these substantial differences, we also investigated whether the initial homogenization could mobilize Abeta from plaques, using 12-month-old PS1xAPP cortical samples. Our data demonstrated that manual homogenization (using Dounce) preserved the integrity of Abeta plaques whereas strong homogenization procedures (such as sonication) produced a vast redistribution of the Abeta species in all soluble and insoluble fractions. This artifact could explain the dissimilar and somehow controversial data between different groups analyzing human AD sample

    Amyloid-β impairs the phagocytosis of dystrophic synapses by astrocytes in Alzheimer's disease

    Get PDF
    Reactive astrocytes and dystrophic neurites, most aberrant presynaptic elements, are found surrounding amyloid-β plaques in Alzheimer's disease (AD). We have previously shown that reactive astrocytes enwrap, phagocytose, and degrade dystrophic synapses in the hippocampus of APP mice and AD patients, but affecting less than 7% of dystrophic neurites, suggesting reduced phagocytic capacity of astrocytes in AD. Here, we aimed to gain insight into the underlying mechanisms by analyzing the capacity of primary astrocyte cultures to phagocytose and degrade isolated synapses (synaptoneurosomes, SNs) from APP (containing dystrophic synapses and amyloid-β peptides), Tau (containing AT8- and AT100-positive phosphorylated Tau) and WT (controls) mice. We found highly reduced phagocytic and degradative capacity of SNs-APP, but not AT8/AT100-positive SNs-Tau, as compared with SNs-WT. The reduced astrocyte phagocytic capacity was verified in hippocampus from 12-month-old APP mice, since only 1.60 ± 3.81% of peri-plaque astrocytes presented phagocytic structures. This low phagocytic capacity did not depend on microglia-mediated astrocyte reactivity, because removal of microglia from the primary astrocyte cultures abrogated the expression of microglia-dependent genes in astrocytes, but did not affect the phagocytic impairment induced by oligomeric amyloid-β alone. Taken together, our data suggest that amyloid-β, but not hyperphosphorylated Tau, directly impairs the capacity of astrocytes to clear the pathological accumulation of oligomeric amyloid-β, as well as of peri-plaque dystrophic synapses containing amyloid-β, perhaps by reducing the expression of phagocytosis receptors such as Mertk and Megf10, thus increasing neuronal damage in AD. Therefore, the potentiation or recovery of astrocytic phagocytosis may be a novel therapeutic avenue in AD.Centro de Invesitgacion Biomedica en Red Enfermedades Neurodegenetativas (CIBERNED). CB06/05/0094 y CB06/05/1116Instituto de Salud Carlos III y fondos FEDER de la Unión Europea. PI18/01556 y PI18/01557Consejería de Economía y Conocimiento de la Junta de Andalucía y el Programa Operativo FEDER 2014-2020. PY18-RT-2233, UMA18-FEDERJA-211 y US-1262734Fundación La Marató-TV3. 20141430, 20141431, 2014143

    Hypoxia compromises the mitochondrial metabolism of Alzheimer’s disease microglia via HIF1

    Get PDF
    Genetic Alzheimer’s disease (AD) risk factors associate with reduced defensive amyloid β plaque-associated microglia (AβAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe concomitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AβAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation. In vivo, overstabilization of HIF1, either genetically or by exposure to systemic hypoxia, reduces AβAM clustering and proliferation and increases Aβ neuropathology. In the human AD hippocampus, upregulation of HIF1α and HIF1 target genes correlates with reduced Aβ plaque microglial coverage and an increase of Aβ plaque-associated neuropathology. Thus, hypoxia (a modifiable AD risk factor) hijacks microglial mitochondrial metabolism and converges with genetic susceptibility to cause AD microglial dysfunction.Instituto de Salud Carlos III CD09/0007, PI18/01556, PI18/01557Ministerio de Educación, Cultura y Deporte FPU14/02115, AP2010‐1598, FPU16/02050, FPU15/02898, BES-2010-033886Ministerio de Economia, Industria y Competitividad SAF2012‐33816, SAF2015‐64111‐R, SAF2017-90794-REDT, PIE13/0004, BFU2016-76872-R, BES-2011-047721Junta de Andalucía P12‐CTS‐2138, P12‐CTS‐2232, UMA18-FEDERJA-211, US‐126273

    Systemic and Local Hypoxia Synergize Through HIF1 to Compromise the Mitochondrial Metabolism of Alzheimer's Disease Microglia

    Get PDF
    Microglial cells are key contributors to Alzheimer’s disease (AD), constituting the first cellular line against Aß plaques. Local hypoxia and hypoperfusion, which are typically present in peripheral inflammatory foci, are also common in the AD brain. We describe here that Aß deposits are hypoxic and hypoperfused and that Aß plaque-associated microglia (AßAM) are characterized by the expression of hypoxia-inducible factor 1 (HIF1)-regulated genes. Notably, AßAM simultaneously upregulate the expression of genes involved in anaerobic glycolysis and oxidative mitochondrial metabolism, show elongated mitochondria surrounded by rough endoplasmic reticulum, and blunt the HIF1-mediated exclusion of pyruvate from the mitochondria through the pyruvate dehydrogenase kinase 1 (PDK1). Overstabilization of HIF1 –by genetic (von Hippel-Lindau deficient microglia) or systemic hypoxia (an AD risk factor)– induces PDK1 in microglia and reduces microglial clustering in AD mouse models. The human AD brain exhibits increased HIF1 activity and a hypoxic brain area shows reduced microglial clustering. The loss of the microglial barrier associates with augmented Aß neuropathology both in the chronic hypoxia AD mouse model and the human AD brain. Thus, the synergy between local and systemic AD risk factors converges with genetic susceptibility to cause microglial dysfunction.Peer reviewe

    Hypoxia compromises the mitochondrial metabolism of Alzheimer’s disease microglia via HIF1

    Get PDF
    Genetic Alzheimer’s disease (AD) risk factors associate with reduced defensive amyloid β plaque-associated microglia (AβAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe concomitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AβAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation. In vivo, overstabilization of HIF1, either genetically or by exposure to systemic hypoxia, reduces AβAM clustering and proliferation and increases Aβ neuropathology. In the human AD hippocampus, upregulation of HIF1α and HIF1 target genes correlates with reduced Aβ plaque microglial coverage and an increase of Aβ plaque-associated neuropathology. Thus, hypoxia (a modifiable AD risk factor) hijacks microglial mitochondrial metabolism and converges with genetic susceptibility to cause AD microglial dysfunction.R.M.-D. was the recipient of a Sara Borrell fellowship from Instituto de Salud Carlos III (ISCIII) (CD09/0007). N.L.-U., C.O.-d.S.L., C.R.-M. and M.I.A.-V. were the recipients of FPU fellowships from Spanish Ministry of Education, Culture and Sport (FPU14/02115, AP2010‐1598, FPU16/02050 and FPU15/02898, respectively). A.H.-G. was the recipient of an FPI fellowship from the Spanish Ministry of Education, Culture and Sport (BES-2010-033886). This work was supported by grants from the Spanish MINEICO, ISCIII and FEDER (European Union) (SAF2012‐33816, SAF2015‐64111‐R, SAF2017-90794-REDT and PIE13/0004 to A.P.); by the Regional Government of Andalusia co-funded by CEC and FEDER funds (European Union) (‘Proyectos de Excelencia’; P12‐CTS‐2138 and P12‐CTS‐2232 to A.P.); by the ‘Ayuda de Biomedicina 2018’, Fundación Domingo Martínez (to A.P.) ; by the ISCIII of Spain, co-financed by FEDER funds (European Union) through grants PI18/01556 (to J.V.) and PI18/01557 (to A. Gutierrez); by Junta de Andalucía, co-financed by FEDER funds (grants UMA18-FEDERJA-211 (to A. Gutierrez) and US‐1262734 (to J.V.)); and by Spanish MINEICO (BFU2016-76872-R and BES-2011-047721 to E.B.).Peer reviewe

    Dual roles of Aβ in proliferative processes in an amyloidogenic model of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease is a major neurodegenerative disorder that leads to severe cognitive deficits in the elderly population. Over the past two decades, multiple studies have focused on elucidating the causative factors underlying memory defects in Alzheimer’s patients. In this regard, new evidence linking Alzheimer’s disease-related pathology and neuronal stem cells suggests that hippocampal neurogenesis impairment is an important factor underlying these cognitive deficits. However, because of conflicting results, the impact of Aβ pathology on neurogenesis/gliogenesis remains unclear. Here, we investigated the effect of Aβ on neuronal and glial proliferation by using an APP/PS1 transgenic model and in vitro assays. Specifically, we showed that neurogenesis is affected early in the APP/PS1 hippocampus, as evidenced by a significant decrease in the proliferative activity due to a reduced number of both radial glia-like neural stem cells (type-1 cells) and intermediate progenitor cells (type-2 cells). Moreover, we demonstrated that soluble Aβ from APP/PS1 mice impairs neuronal cell proliferation using neurosphere cultures. On the other hand, we showed that oligomeric Aβ stimulates microglial proliferation, whereas no effect was observed on astrocytes. These findings indicate that Aβ has a differential effect on hippocampal proliferative cells by inhibiting neuronal proliferation and triggering the formation of microglial cells.This study was supported by Institute of Health Carlos III (ISCiii, Spain) through grants PI12/01431, PI15/00796 (to AG) and PI12/01439, PI15/00957 (to JV) that were co-financed by FEDER funds from European Union, by Junta de Andalucia Proyecto de Excelencia CTS-2035 (to JV and AG), Alzheimer’s Association NIRG-15-363477 (to DBV) and The Larry Hillblom Foundation #2013-A-016-FEL (to DBV).Peer reviewe

    Amyloid‐β impairs the phagocytosis of dystrophic synapses by astrocytes in Alzheimer's disease

    No full text
    Reactive astrocytes and dystrophic neurites, most aberrant presynaptic elements, are found surrounding amyloid‐β plaques in Alzheimer's disease (AD). We have previously shown that reactive astrocytes enwrap, phagocytose, and degrade dystrophic synapses in the hippocampus of APP mice and AD patients, but affecting less than 7% of dystrophic neurites, suggesting reduced phagocytic capacity of astrocytes in AD. Here, we aimed to gain insight into the underlying mechanisms by analyzing the capacity of primary astrocyte cultures to phagocytose and degrade isolated synapses (synaptoneurosomes, SNs) from APP (containing dystrophic synapses and amyloid‐β peptides), Tau (containing AT8‐ and AT100‐positive phosphorylated Tau) and WT (controls) mice. We found highly reduced phagocytic and degradative capacity of SNs‐APP, but not AT8/AT100‐positive SNs‐Tau, as compared with SNs‐WT. The reduced astrocyte phagocytic capacity was verified in hippocampus from 12‐month‐old APP mice, since only 1.60 ± 3.81% of peri‐plaque astrocytes presented phagocytic structures. This low phagocytic capacity did not depend on microglia‐mediated astrocyte reactivity, because removal of microglia from the primary astrocyte cultures abrogated the expression of microglia‐dependent genes in astrocytes, but did not affect the phagocytic impairment induced by oligomeric amyloid‐β alone. Taken together, our data suggest that amyloid‐β, but not hyperphosphorylated Tau, directly impairs the capacity of astrocytes to clear the pathological accumulation of oligomeric amyloid‐β, as well as of peri‐plaque dystrophic synapses containing amyloid‐β, perhaps by reducing the expression of phagocytosis receptors such as Mertk and Megf10, thus increasing neuronal damage in AD. Therefore, the potentiation or recovery of astrocytic phagocytosis may be a novel therapeutic avenue in AD.Research funding: Centro de Invesitgacion Biomedica en Red Enfermedades Neurodegenetativas (CIBERNED). Grant Numbers: CB06/05/0094, CB06/05/1116; Instituto de Salud Carlos III co‐financed by FEDER funds from European Union. Grant Numbers: PI18/01556, PI18/01557; Junta de Andalucia Consejería de Economía y Conocimiento co‐financed by Programa Operativo FEDER 2014‐2020. Grant Numbers: PY18‐RT‐2233, UMA18‐FEDERJA‐211, US‐1262734; La Marató‐TV3 Foundation. Grant Numbers: 20141430, 20141431, 20141432
    corecore