8 research outputs found

    The Effect of the Isomeric Chlorine Substitutions on the Honeycomb-Patterned Films of Poly(x-chlorostyrene)s/Polystyrene Blends and Copolymers via Static Breath Figure Technique

    Get PDF
    Polymeric thin films patterned with honeycomb structures were prepared from poly(x-chlorostyrene) and statistical poly(x-chlorostyrene-co-styrene) copolymers by static breath figure method. Each polymeric sample was synthesized by free radical polymerization and its solution in tetrahydrofuran cast on glass wafers under 90% relative humidity (RH). The effect of the chorine substitution in the topography and conformational entropy was evaluated. The entropy of each sample was calculated by using Voronoi tessellation. The obtained results revealed that these materials could be a suitable toolbox to develop a honeycomb patterns with a wide range of pore sizes for a potential use in contact guidance induced culture.This research was funded by the Government of Basque Country, grant ELKARTEK FRONTIERS KK-2017/0096 and grant Grupos de Investigacion IT718-13

    Strategies to Enhance Biomedical Device Performance and Safety: A Comprehensive Review

    Get PDF
    This paper reviews different approaches to obtain biomaterials with tailored functionalities and explains their significant characteristics that influence their bioactivity. The main goal of this discussion underscores the significance of surface properties in materials, with a particular emphasis on their role in facilitating cell adhesion in order to obtain good biocompatibility and biointegration, while preventing adverse effects, such as bacterial contamination and inflammation processes. Consequently, it is essential to design strategies and interventions that avoid bacterial infections, reducing inflammation and enhancing compatibility systems. Within this review, we elucidate the most prevalent techniques employed for surface modification, notably emphasizing surface chemical composition and coatings. In the case of surface chemical composition, we delve into four commonly applied approaches: hydrolysis, aminolysis, oxidation, and plasma treatment. On the other hand, coatings can be categorized based on their material composition, encompassing ceramic-based and polymer-based coatings. Both types of coatings have demonstrated efficacy in preventing bacterial contamination, promoting cell adhesion and improving biological properties of the surface. Furthermore, the addition of biological agents such as drugs, proteins, peptides, metallic ions plays a pivotal role in manifesting the prevention of bacterial infection, inflammatory responses, and coagulation mechanism.The authors acknowledge the Basque Government for Grupos Consolidados grant IT1756-22 and ELKARTEK program KK-2021/00025

    Poly(l-lactide)-Based Anti-Inflammatory Responsive Surfaces for Surgical Implants

    Get PDF
    In the last few decades, surgical implants have been widely used to restore the function of damaged bones or joints. However, it is essential to receive antibiotic or anti-inflammatory treatment to circumvent significant problems associated, such as the colonization of the implanted surface by bacteria or other microorganisms and strong host inflammatory responses. This article presents the effectiveness of the copper catalyzed alkyne-azide cycloaddition (CuAAC) (“click”) reaction by the linkage of a fluorophore to the poly(L-lactide) (PLLA) surface. The results were analysed by means of X-ray photoelectron spectroscopy (XPS), contact angle and fluorescence microscopy. Moreover, this current work describes the covalent immobilization of the anti-inflammatory drug indomethacin on a PLLA surface. The CuAAC click reaction was selected to anchor the drug to the polymeric films. The successful bioconjugation of the drug was confirmed by XPS and the change on the contact angle

    Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies

    Get PDF
    Titanium (Ti) and its alloys have been demonstrated over the last decades to play an important role as inert materials in the field of orthopedic and dental implants. Nevertheless, with the widespread use of Ti, implant-associated rejection issues have arisen. To overcome these problems, antibacterial properties, fast and adequate osseointegration and long-term stability are essential features. Indeed, surface modification is currently presented as a versatile strategy for developing Ti coatings with all these challenging requirements and achieve a successful performance of the implant. Numerous approaches have been investigated to obtain stable and well-organized Ti coatings that promote the tailoring of surface chemical functionalization regardless of the geometry and shape of the implant. However, among all the approaches available in the literature to functionalize the Ti surface, a promising strategy is the combination of surface pre-activation treatments typically followed by the development of intermediate anchoring layers (self-assembled monolayers, SAMs) that serve as the supporting linkage of a final active layer. Therefore, this paper aims to review the latest approaches in the biomedical area to obtain bioactive coatings onto Ti surfaces with a special focus on (i) the most employed methods for Ti surface hydroxylation, (ii) SAMs-mediated active coatings development, and (iii) the latest advances in active agent immobilization and polymeric coatings for controlled release on Ti surfaces.This research was funding by Basque Government (ELKARTEK program, HAZITEK program–IMABI exp number ZE-2019/00012), Department of Development and Infrastructures of the Basque Country, University of the Basque Country UPV/EHU (GIU 207075), Ministry of Economy, Industry and Competitiveness (grant MAT2017-89553-P) and i+Med S. Coop

    Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials

    Get PDF
    Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.This research was funded by the Basque Government Grupos Consolidados (grant IT1756-22), The National Council of Sciences, Humanities and Technology (CONAHCYT) of the Mexican government (postdoctoral grant CVU 484866), and PROSNI program of the University of Guadalajara whose resources supported part of this work

    Eugenola: polimero jasangarrien biomasatik erauzitako lehengaia

    Get PDF
    In recent years, the interest of renewable resources in the scientific community has increased. In fact, carbon emissions and their waste have led to the search for more sustainable raw materials. Therefore, replacing fossil fuels with natural raw materials has become urgent. Natural monomers with aromatic and particularly phenolic groups are highly desirable because of the evident thermal, chemical and mechanical properties of the polymeric materials that produce them. This work develops different polymerizations that can be generated using the excellent functionality of the natural raw material called eugenol. For example, radical and cationic polymerization, olefinic metathesis, polycondensation, ene reaction and thiolene reaction.; Azken urteotan, gizartean ingurumenaren kalteaz dagoen kezkak bultzaturik, zientzia-komunitatean baliabide berriztagarrien interesa handitu egin da. Izan ere, karbono-emisioek eta haiek sortzen dituzten hondakinek lehengai jasangarriagoak bilatzera eraman dute. Hortaz, erregai fosilak lehengai naturaletatik ordezkatzea premiazko bihurtu da. Talde aromatikoak eta, bereziki, fenolikoak dituzten monomero naturalak oso desiragarriak dira, sortzen dituzten material polimerikoen propietate termiko, kimiko eta mekaniko nabarmenengatik. Lan honen bidez, eugenola deritzon lehengai naturala-ren funtzionalitate bikainaz baliatuz garatu diren polimerizazioak bildu dira. Alde horretatik, erradikal bidezko polimerizazioa eta kationikoa, metatesi olefinikoa, polikondentsazioa, ene erreakzioak eta tiol-ene erreakzioak erabiliz, eugenol konposatuan oinarritutako polimeroen sintesia aztertu da

    Analysis of the influence of microencapsulated phase change materials on the behavior of a new generation of thermo-regulating shape memory polyurethane fibers

    Get PDF
    The present work is a first approach in order to achieve thermo-sensitive and waterproof polyurethane fibers useful in the textile industry. For this, two polyurethane formulations with glass transition temperatures (Tg) close to the body temperature have been synthetized and characterized by several techniques such as Ther-mogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic-Mechanical Analysis (DMA) and Thermo-mechanical analysis (TMA). In this manner their thermal and shape memory behavior were determined. It was also estimated the water vapor transmission rate of both polyurethane films. Then, integration of two different microencapsulated phase change materials (PCMs), one with organic shell and another one, with an inorganic shell, was carried out by extrusion in order to achieve materials with thermo-regulating properties. Fibers for both polyurethanes, pristine or loaded with microencapsulated PCMs, were again characterized to check that the thermal and shape memory properties are maintained, and to study their capability to storage and release energy. The promising results pave the way for a new generation of thermo-regulating materials useful in numerous applications such as the textile sector.Authors would like to acknowledge the Basque Government funding within the ELKARTEK 2019 (KK-2019/00039) and ELKARTEK 2021 (KK-2021/00040) and FRONTIERS IV Prog rammes

    Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies

    No full text
    Titanium (Ti) and its alloys have been demonstrated over the last decades to play an important role as inert materials in the field of orthopedic and dental implants. Nevertheless, with the widespread use of Ti, implant-associated rejection issues have arisen. To overcome these problems, antibacterial properties, fast and adequate osseointegration and long-term stability are essential features. Indeed, surface modification is currently presented as a versatile strategy for developing Ti coatings with all these challenging requirements and achieve a successful performance of the implant. Numerous approaches have been investigated to obtain stable and well-organized Ti coatings that promote the tailoring of surface chemical functionalization regardless of the geometry and shape of the implant. However, among all the approaches available in the literature to functionalize the Ti surface, a promising strategy is the combination of surface pre-activation treatments typically followed by the development of intermediate anchoring layers (self-assembled monolayers, SAMs) that serve as the supporting linkage of a final active layer. Therefore, this paper aims to review the latest approaches in the biomedical area to obtain bioactive coatings onto Ti surfaces with a special focus on (i) the most employed methods for Ti surface hydroxylation, (ii) SAMs-mediated active coatings development, and (iii) the latest advances in active agent immobilization and polymeric coatings for controlled release on Ti surfaces
    corecore