24 research outputs found

    MEJORA DE LA CALIDAD DEL SERVICIO QUE BRINDAN LAS EMPRESAS FERRETERAS

    Get PDF
    Resumen El sector ferretero es modelo de negocio con pocos estudios realizados para la medición de la satisfacción del cliente, es por ello que es de suma importancia realizar una investigación para determinar cuáles son los factores que más afectan a los clientes e implementar herramientas de mejora que ayudaran a incrementar dicha satisfacción. Para determinar cuáles son los factores que más afectan a la satisfacción del cliente, es necesario interactuar con ellos a través de encuestas y observaciones, para tener un dato clave y saber qué es lo que ellos buscan o esperan del servicio ofrecido por las ferreterías, y como se mencionó en un principio, determinar qué factores afectan su satisfacción. Una vez obtenidos los datos y determinado el factor o los factores que más inciden en la satisfacción de cliente, es necesario definir cuáles serán las mejores herramientas que se utilizarán para mejorarla. Las herramientas utilizadas para el incremento de la satisfacción del cliente son 5´s, Kanban, poka-yoke y kaizen, ya que son herramientas o metodologías de mejora continua que darán solución a muchos problemas en los procesos de servicio de las ferreterías, ya sea de tiempo, movimientos, espacios e incluso de atención al cliente, entre otros.Palabras Clave: Mejora, calidad, esbelto. IMPROVEMENT OF THE QUALITY OF SERVICE PROVIDED BY THE HARDWARE COMPANIESAbstract The hardware sector is a business model with few studies carried out to measure customer satisfaction, that is why it is very important to carry out an investigation to determine which are the factors that most affect customers and implement improvement tools that will help increase that satisfaction. To determine which factors are most affecting customer satisfaction, it is necessary to interact with them through surveys and observations, to have a key information and know what they are looking for or expect from the service offered by the hardware stores, and as mentioned at the beginning, determine what factors affect their satisfaction. Once the data has been obtained and the factor or factors that affect customer satisfaction have been determined, it is necessary to define the best tools that will be used to improve it. The tools used to increase customer satisfaction are 5's, Kanban, Poka-yoke and Kaizen, since they are tools or methodologies for continuous improvement that will solve many problems in the service processes of the hardware stores, either for time, movements, spaces and even customer service, among others.Keywords: Improvement, quality, lean

    First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV

    No full text
    International audienceProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/cc beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380±\pm26 mbarns for the 6 GeV/cc setting and 379±\pm35 mbarns for the 7 GeV/cc setting

    First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV

    No full text
    International audienceProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/cc beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380±\pm26 mbarns for the 6 GeV/cc setting and 379±\pm35 mbarns for the 7 GeV/cc setting

    The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs

    No full text
    International audienceThis paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions

    First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV

    No full text
    International audienceProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/cc beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380±\pm26 mbarns for the 6 GeV/cc setting and 379±\pm35 mbarns for the 7 GeV/cc setting

    First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV

    No full text
    International audienceProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/cc beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380±\pm26 mbarns for the 6 GeV/cc setting and 379±\pm35 mbarns for the 7 GeV/cc setting

    DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions

    No full text
    The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos

    Supernova Pointing Capabilities of DUNE

    No full text
    International audienceThe determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on 40^{40}Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore