24,277 research outputs found

    Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements

    Get PDF
    This study highlights the role of interactions between surface and sub-surface water of the riparian zone of a large river (the Garonne, SW France). Information is given about the role of surface water in supplying Dissolved Organic Carbon (DOC ) to the riparian zone for nitrate removal processes. The densities of bacteria (up to 3.3106 cell m L-1) in groundwater are strongly conditioned by the water moving during flood events. Total bacterial densities in groundwater were related to surface water bacterial densities. In sediment, total bacteria are attached mainly to fine particles (90 % in the fraction < 1 mm). Spatial variations in organic carbon and nitrate content in groundwater at the site studied are correlated with exchanges between the groundwater and the river, from the upstream to the downstream part of the meander. Total bacterial densities, nitrate and decressing organic carbon concentrations follow the same pattern. These results suggest that, in this kind of riparian wetland, nitrate from alluvial groundwater influenced by agricultural practices may be denitrified by bacteria in the presence of organic carbon from river surface water

    A standardised method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands

    Get PDF
    A tracer test to examine in situ denitrification in shallow groundwater by a piezometer with a packer system used bromide as a tracer of dilution and acetylene (10%) to block the denitrification process at the nitrous oxide stage. During the test, dissolved oxygen, nitrate (NO3-), bromide (Br-), nitrous oxide (N2O) and dissolved organic carbon (DOC) were measured. To calibrate the experimental method, comparison with numerical simulations of the groundwater transfer were carried out, taking into account the environmental characteristics. The method was tested by measurements undertaken in different environmental conditions (geology, land use and hydrology) in two riparian wetlands. Denitrification rates measured by this method ranged from 5.7 10-6 g N-NO3-L-1 h-1 to 1.97 10-3 g N-NO3-L-1 h-1 The method is applicable in shallow aquifers with a permeability from 10-2 to 10-4m s-1

    On the local Lorentz invariance in N=1 supergravity

    Full text link
    We discuss the local Lorentz invariance in the context of N=1 supergravity and show that a previous attempt to find explicit solutions to the Lorentz constraint in terms of γ−\gamma-matrices is not correct. We improve that solution by using a different representation of the Lorentz operators in terms of the generators of the rotation group, and show its compatibility with the matrix representation of the fermionic field. We find the most general wave functional that satisfies the Lorentz constraint in this representation

    Optical Properties of Graphene Nanoflakes: Shape Matters

    Get PDF
    In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNF) or graphene quantum dots (GQD) are relevant for their electronic structure, thermal stability and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the calculated absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.Comment: 8 pages, 9 figures. Submitted to The Journal of Chemical Physic
    • …
    corecore