22,674 research outputs found
Transport properties of armchair graphene nanoribbon junctions between graphene electrodes
The transmission properties of armchair graphene nanoribbon junctions between
graphene electrodes are investigated by means of first-principles quantum
transport calculations. First the dependence of the transmission function on
the size of the nanoribbon has been studied. Two regimes are highlighted: for
small applied bias transport takes place via tunneling and the length of the
ribbon is the key parameter that determines the junction conductance; at higher
applied bias resonant transport through HOMO and LUMO starts to play a more
determinant role, and the transport properties depend on the details of the
geometry (width and length) of the carbon nanoribbon. In the case of the
thinnest ribbon it has been verified that a tilted geometry of the central
phenyl ring is the most stable configuration. As a consequence of this rotation
the conductance decreases due to the misalignment of the orbitals between
the phenyl ring and the remaining part of the junction. All the computed
transmission functions have shown a negligible dependence on different
saturations and reconstructions of the edges of the graphene leads, suggesting
a general validity of the reported results
Coulomb-blockade effect in nonlinear mesoscopic capacitors
We consider an interacting quantum dot working as a coherent source of single
electrons. The dot is tunnel coupled to a reservoir and capacitively coupled to
a gate terminal with an applied ac potential. At low frequencies, this is the
quantum analog of the RC circuit with a purely dynamical response. We
investigate the quantized dynamics as a consequence of ac pulses with large
amplitude. Within a Keldysh-Green function formalism we derive the
time-dependent current in the Coulomb blockade regime. Our theory thus extends
previous models that considered either noninteracting electrons in nonlinear
response or interacting electrons in the linear regime. We prove that the
electron emission and absorption resonances undergo a splitting when the
charging energy is larger than the tunnel broadening. For very large charging
energies, the additional peaks collapse and the original resonances are
recovered, though with a reduced amplitude. Quantization of the charge emitted
by the capacitor is reduced due to Coulomb repulsion and additional plateaus
arise. Additionally, we discuss the differential capacitance and resistance as
a function of time. We find that to leading order in driving frequency the
current can be expressed as a weighted sum of noninteracting currents shifted
by the charging energy.Comment: 13 pages, 9 figures. Minor changes. Published versio
A mechanism for unipolar resistance switching in oxide non-volatile memory devices
Building on a recently introduced model for non-volatile resistive switching,
we propose a mechanism for unipolar resistance switching in
metal-insulator-metal sandwich structures. The commutation from the high to low
resistance state and back can be achieved with successive voltage sweeps of the
same polarity. Electronic correlation effects at the metal-insulator interface
are found to play a key role to produce a resistive commutation effect in
qualitative agreement with recent experimental reports on binary transition
metal oxide based sandwich structures.Comment: 4 pages, 2 figure
A standardised method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands
A tracer test to examine in situ denitrification in shallow groundwater by a piezometer with a packer system used bromide as a tracer of dilution and acetylene (10%) to block the denitrification process at the nitrous oxide stage. During the test, dissolved oxygen, nitrate (NO3-), bromide (Br-), nitrous oxide (N2O) and dissolved organic carbon (DOC) were measured. To calibrate the experimental method, comparison with numerical simulations of the groundwater transfer were carried out, taking into account the environmental characteristics. The method was tested by measurements undertaken in different environmental conditions (geology, land use and hydrology) in two riparian wetlands. Denitrification rates measured by this method ranged from 5.7 10-6 g N-NO3-L-1 h-1 to 1.97 10-3 g N-NO3-L-1 h-1 The method is applicable in shallow aquifers with a permeability from 10-2 to 10-4m s-1
The central molecular gas structure in LINERs with low luminosity AGN: evidence for gradual disappearance of the torus
We present observations of the molecular gas in the nuclear environment of
three prototypical low luminosity AGN (LLAGN), based on VLT/SINFONI AO-assisted
integral-field spectroscopy of H2 1-0 S(1) emission at angular resolutions of
~0.17". On scales of 50-150 pc the spatial distribution and kinematics of the
molecular gas are consistent with a rotating thin disk, where the ratio of
rotation (V) to dispersion (sigma) exceeds unity. However, in the central 50
pc, the observations reveal a geometrically and optically thick structure of
molecular gas (V/sigma10^{23} cm^{-2}) that is likely to be
associated with the outer extent of any smaller scale obscuring structure. In
contrast to Seyfert galaxies, the molecular gas in LLAGN has a V/sigma<1 over
an area that is ~9 times smaller and column densities that are in average ~3
times smaller. We interpret these results as evidence for a gradual
disappearance of the nuclear obscuring structure. While a disk wind may not be
able to maintain a thick rotating structure at these luminosities, inflow of
material into the nuclear region could provide sufficient energy to sustain it.
In this context, LLAGN may represent the final phase of accretion in current
theories of torus evolution. While the inflow rate is considerable during the
Seyfert phase, it is slowly decreasing, and the collisional disk is gradually
transitioning to become geometrically thin. Furthermore, the nuclear region of
these LLAGN is dominated by intermediate-age/old stellar populations (with
little or no on-going star formation), consistent with a late stage of
evolution.Comment: 15 pages, including 4 figures and 1 table, Accepted for publication
in ApJ Letter
- …