21,152 research outputs found
A mechanism for unipolar resistance switching in oxide non-volatile memory devices
Building on a recently introduced model for non-volatile resistive switching,
we propose a mechanism for unipolar resistance switching in
metal-insulator-metal sandwich structures. The commutation from the high to low
resistance state and back can be achieved with successive voltage sweeps of the
same polarity. Electronic correlation effects at the metal-insulator interface
are found to play a key role to produce a resistive commutation effect in
qualitative agreement with recent experimental reports on binary transition
metal oxide based sandwich structures.Comment: 4 pages, 2 figure
Compositional analysis of InAs-GaAs-GaSb heterostructures by low-loss electron energy loss spectroscopy
As an alternative to Core-Loss Electron Energy Loss Spectroscopy, Low-Loss EELS is suitable for compositional analysis of complex heterostructures, such as the InAs-GaAs-GaSb system, since in this energy range the edges corresponding to these elements are better defined than in Core-Loss. Furthermore, the analysis of the bulk plasmon peak, which is present in this energy range, also provides information about the composition. In this work, compositional information in an InAs-GaAs-GaSb heterostructure has been obtained from Low-Loss EEL spectra
Probing phase coexistence and stabilization of the spin-ordered ferrimagnetic state by Calcium addition in the YBa_{1-x}Ca_{x}Co_{2}O_{5.5} layered cobaltites using neutron diffraction
In this article we study the effects of a partial substitution of Ba with the
smaller cation Ca in the layered cobaltites YBaCo_2O_{5+\delta} for \delta
\approx 0.5. Neutron thermodiffractograms are reported for the compounds
YBa_{0.95}Ca_{0.05}Co_2O_{5.5} (x_{Ca}=0.05) and YBa_{0.90}Ca_{0.10}Co_2O_{5.5}
(x_{Ca}=0.10) in the temperature range 20 K \leq T \leq 300 K, as well as high
resolution neutron diffraction experiments at selected temperatures for the
samples x_{Ca}=0.05, x_{Ca}=0.10 and the parent compound x_{Ca}=0. We have
found the magnetic properties to be strongly affected by the cationic
substitution. Although the "122" perovskite structure seems unaffected by Ca
addition, the magnetic arrangements of Co ions are drastically modified: the
antiferromagnetic (AFM) long-range order is destroyed, and a ferrimagnetic
phase with spin state order is stabilized below T \sim 290 K. For the sample
with x_{Ca}=0.05 a fraction of AFM phase coexists with the ferrimagnetic one
below T \sim 190 K, whereas for x_{Ca}=0.10 the AFM order is completely lost.
The systematic refinement of the whole series has allowed for a better
understanding of the observed low-temperature diffraction patterns of the
parent compound, YBaCo_2O_{5.5}, which had not yet been clarified. A two-phase
scenario is proposed for the x_{Ca}=0 compound which is compatible with the
phase coexistence observed in the x_{Ca}=0.05 sample
Semiclassical and Quantum Black Holes and their Evaporation, de Sitter and Anti-de Sitter Regimes, Gravitational and String Phase Transitions
An effective string theory in physically relevant cosmological and black hole
space times is reviewed. Explicit computations of the quantum string entropy,
partition function and quantum string emission by black holes (Schwarzschild,
rotating, charged, asymptotically flat, de Sitter dS and AdS space times) in
the framework of effective string theory in curved backgrounds provide an
amount of new quantum gravity results as: (i) gravitational phase transitions
appear with a distinctive universal feature: a square root branch point
singularity in any space time dimensions. This is of the type of the de Vega -
Sanchez transition for the thermal self-gravitating gas of point particles.
(ii) There are no phase transitions in AdS alone. (iii) For background,
upper bounds of the Hubble constant H are found, dictated by the quantum string
phase transition.(iv) The Hawking temperature and the Hagedorn temperature are
the same concept but in different (semiclassical and quantum) gravity regimes
respectively. (v) The last stage of black hole evaporation is a microscopic
string state with a finite string critical temperature which decays as usual
quantum strings do in non-thermal pure quantum radiation (no information
loss).(vi) New lower string bounds are given for the Kerr-Newman black hole
angular momentum and charge, which are entirely different from the upper
classical bounds. (vii) Semiclassical gravity states undergo a phase transition
into quantum string states of the same system, these states are duals of each
other in the precise sense of the usual classical-quantum (wave-particle)
duality, which is universal irrespective of any symmetry or isommetry of the
space-time and of the number or the kind of space-time dimensions.Comment: review paper, no figures. to appear in Int Jour Mod Phys
Semiclassical (QFT) and Quantum (String) Rotating Black Holes and their Evaporation: New Results
Combination of both quantum field theory (QFT) and string theory in curved
backgrounds in a consistent framework, the string analogue model, allows us to
provide a full picture of the Kerr-Newman black hole and its evaporation going
beyond the current picture. We compute the quantum emission cross section of
strings by a Kerr-Newmann black hole (KNbh). It shows the black hole emission
at the Hawking temperature T_{sem} in the early evaporation and the new string
emission featuring a Hagedorn transition into a string state of temperature T_
s at the last stages. New bounds on the angular momentum J and charge Q emerge
in the quantum string regime. The last state of evaporation of a semiclassical
KNbh is a string state of temperature T_s, mass M_s, J = 0 = Q, decaying as a
quantum string into all kinds of particles.(There is naturally, no loss of
information, (no paradox at all)). We compute the microscopic string entropy
S_s(m, j) of mass m and spin mode j. (Besides the usual transition at T_s), we
find for high j, (extremal string states) a new phase transition at a
temperature T_{sj} higher than T_s. We find a new formula for the Kerr black
hole entropy S_{sem}, as a function of the usual Bekenstein-Hawking entropy .
For high angular momentum, (extremal J = GM^2/c), a gravitational phase
transition operates and the whole entropy S_{sem} is drastically different from
the Bekenstein-Hawking entropy. This new extremal black hole transition occurs
at a temperature T_{sem J} higher than the Hawking temperature T_{sem}.Comment: New articl
Further properties of causal relationship: causal structure stability, new criteria for isocausality and counterexamples
Recently ({\em Class. Quant. Grav.} {\bf 20} 625-664) the concept of {\em
causal mapping} between spacetimes --essentially equivalent in this context to
the {\em chronological map} one in abstract chronological spaces--, and the
related notion of {\em causal structure}, have been introduced as new tools to
study causality in Lorentzian geometry. In the present paper, these tools are
further developed in several directions such as: (i) causal mappings --and,
thus, abstract chronological ones-- do not preserve two levels of the standard
hierarchy of causality conditions (however, they preserve the remaining levels
as shown in the above reference), (ii) even though global hyperbolicity is a
stable property (in the set of all time-oriented Lorentzian metrics on a fixed
manifold), the causal structure of a globally hyperbolic spacetime can be
unstable against perturbations; in fact, we show that the causal structures of
Minkowski and Einstein static spacetimes remain stable, whereas that of de
Sitter becomes unstable, (iii) general criteria allow us to discriminate
different causal structures in some general spacetimes (e.g. globally
hyperbolic, stationary standard); in particular, there are infinitely many
different globally hyperbolic causal structures (and thus, different conformal
ones) on , (iv) plane waves with the same number of positive eigenvalues
in the frequency matrix share the same causal structure and, thus, they have
equal causal extensions and causal boundaries.Comment: 33 pages, 9 figures, final version (the paper title has been
changed). To appear in Classical and Quantum Gravit
Distribution of the S-matrix in chaotic microwave cavities with direct processes and absorption
We quantify the presence of direct processes in the S-matrix of chaotic
microwave cavities with absorption in the one-channel case. To this end the
full distribution P_S(S) of the S-matrix, i.e. S=\sqrt{R}e^{i\theta}, is
studied in cavities with time-reversal symmetry for different antenna coupling
strengths T_a or direct processes. The experimental results are compared with
random-matrix calculations and with numerical simulations based on the
Heidelberg approach including absorption. The theoretical result is a
generalization of the Poisson kernel. The experimental and the numerical
distributions are in excellent agreement with random-matrix predictions for all
cases.Comment: 4 pages, 4 figure
Overdamped sine-Gordon kink in a thermal bath
We study the sine-Gordon kink diffusion at finite temperature in the
overdamped limit. By means of a general perturbative approach, we calculate the
first- and second-order (in temperature) contributions to the diffusion
coefficient. We compare our analytical predictions with numerical simulations.
The good agreement allows us to conclude that, up to temperatures where
kink-antikink nucleation processes cannot be neglected, a diffusion constant
linear and quadratic in temperature gives a very accurate description of the
diffusive motion of the kink. The quadratic temperature dependence is shown to
stem from the interaction with the phonons. In addition, we calculate and
compute the average value of the wave function as a function of
time and show that its width grows with . We discuss the
interpretation of this finding and show that it arises from the dispersion of
the kink center positions of individual realizations which all keep their
width.Comment: REVTeX, 12 pages, 10 figures, to appear in Phys Rev
String Instabilities in Black Hole Spacetimes
We study the emergence of string instabilities in - dimensional black
hole spacetimes (Schwarzschild and Reissner - Nordstr\o m), and De Sitter space
(in static coordinates to allow a better comparison with the black hole case).
We solve the first order string fluctuations around the center of mass motion
at spatial infinity, near the horizon and at the spacetime singularity. We find
that the time components are always well behaved in the three regions and in
the three backgrounds. The radial components are {\it unstable}: imaginary
frequencies develop in the oscillatory modes near the horizon, and the
evolution is like , , near the spacetime
singularity, , where the world - sheet time , and the
proper string length grows infinitely. In the Schwarzschild black hole, the
angular components are always well - behaved, while in the Reissner - Nordstr\o
m case they develop instabilities inside the horizon, near where the
repulsive effects of the charge dominate over those of the mass. In general,
whenever large enough repulsive effects in the gravitational background are
present, string instabilities develop. In De Sitter space, all the spatial
components exhibit instability. The infalling of the string to the black hole
singularity is like the motion of a particle in a potential
where depends on the spacetime
dimensions and string angular momentum, with for Schwarzschild and
for Reissner - Nordstr\o m black holes. For the
string ends trapped by the black hole singularity.Comment: 26pages, Plain Te
- …