346 research outputs found

    Assessment of the sleep parameters in patients with obstructive sleep apnea syndrome with a

    Get PDF
    Objective: In this study, traffic accident with a history ofobstructive sleep apnea syndrome (OSAS) in patientswith polysomnographic parameters was investigated.Methods: A total of 77 OSAS patients were included inthe study. All-night polysomnographic recordings obtainedfrom patients with enuresis parameters and thepresence of traffic accidents recorded in standard form.Results: The mean age of patients was 45.15 ± 11.53years. 53% of the patients were male and 47% female.The mean apnea hypopnea index (AHI) in patients was13.54 events/h. History of traffic accidents was found in12% patients. Apnea hypopnea index, supine AHI, arousalindex and oxygen desaturation index were found significantlydifferent parameters between history of trafficaccidents group and non-history of traffic accidents group(p <0.05).Conclusion: In this study, patients with OSAS severity ofthe disease with a history of traffic accidents were associatedthe relationship between the parameters. This relationshipwith the severity of the disease might be due tothe negative effects on attention. J Clin Exp Invest 2013;4 (2): 204-207Key words: OSAS, traffic accident, AH

    Exact Solution of Photon Equation in Stationary G\"{o}del-type and G\"{o}del Space-Times

    Get PDF
    In this work the photon equation (massless Duffin-Kemmer-Petiau equation) is written expilicitly for general type of stationary G\"{o}del space-times and is solved exactly for G\"{o}del-type and G\"{o}del space-times. Harmonic oscillator behaviour of the solutions is discussed and energy spectrum of photon is obtained.Comment: 9 pages,RevTeX, no figure, revised for publicatio

    Razvoj i vrednovanje dvoslojnih tableta propranolol hidroklorida

    Get PDF
    The objective of the present research was to develop a bilayer tablet of propranolol hydrochloride using superdisintegrant sodium starch glycolate for the fast release layer and water immiscible polymers such as ethyl cellulose, Eudragit RLPO and Eudragit RSPO for the sustaining layer. In vitro dissolution studies were carried out in a USP 24 apparatus I. The formulations gave an initial burst effect to provide the loading dose of the drug followed by sustained release for 12 hrs from the sustaining layer of matrix embedded tablets. In vitro dissolution kinetics followed the Higuchi model via a non-Fickian diffusion controlled release mechanism after the initial burst release. FT-IR studies revealed that there was no interaction between the drug and polymers used in the study. Statistical analysis (ANOVA) showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p 0.005) in the amount of drug released after 12 h from optimized formulations was observed.U radu je opisan razvoj dvoslojnih tableta propranolol hidroklorida, koristeći superdezintegrator škrob glikolat natrij u sloju za brzo oslobađanje i polimere koji se ne miješaju s vodom (etil celuloza, Eudragit RLPO i Eudragit RSPO) u sloju za usporeno oslobađanje. In vitro oslobađanje praćeno je u USP aparatu I te je uočeno početno naglo oslobađanje ljekovite tvari iza kojeg slijedi polagano oslobađanje tijekom 12 sati. In vitro kinetika oslobađanja prati Higouchijev model, dok mehanizam kontroliranog oslobađanja ne slijedi Fickov zakon poslije početnog naglog oslobađanja. FT-IR studije ukazuju da nema interakcije između ljekovite tvari i polimera upotrebljenih u oblikovanju. Statistička analiza (ANOVA) nije pokazala značajne razlike u kumulativnoj količini oslobođenog lijeka iz optimiranih formulacija poslije 15 minuta i polije 12 h

    Enhanced control of the ionization rate in radio-frequency plasmas with structured electrodes via tailored voltage waveforms

    Get PDF
    International audienceRadio-frequency capacitively coupled plasmas that incorporate structured electrodes enable increases in the electron density within spatially localized regions through the hollow cathode effect (HCE). This enables enhanced control over the spatial profile of the plasma density, which is useful for several applications including materials processing, lighting and spacecraft propulsion. However, asymmetries in the powered and grounded electrode areas inherent to the hollow cathode geometry lead to the formation of a time averaged dc self-bias voltage at the powered electrode. This bias alters the energy and flux of secondary electrons leaving the surface of the cathode and consequentially can moderate the increased localized ionization afforded by the hollow cathode discharge. In this work, two-dimensional fluid-kinetic simulations are used to demonstrate control of the dc self-bias voltage in a dual-frequency driven (13.56, 27.12 MHz), hollow cathode enhanced, capacitively coupled argon plasma over the 66.6--200 Pa (0.5--1.5 Torr) pressure range. By varying the phase offset of the 27.12 MHz voltage waveform, the dc self-bias voltage varies by 10%--15% over an applied peak-to-peak voltage range of 600--1000 V, with lower voltages showing higher modulation. Resulting ionization rates due to secondary electrons within the hollow cathode cavity vary by a factor of 3 at constant voltage amplitude, demonstrating the ability to control plasma properties relevant for maintaining and enhancing the HCE

    Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    Get PDF
    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile

    Synchronization and Timing in CMS HCAL

    Get PDF
    The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance

    Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    Get PDF
    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%
    corecore