2,691 research outputs found

    A new Slow Control and Run Initialization Byte-wise Environment (SCRIBE) for the quality control of mass-produced CMS GEM detectors

    Full text link
    The CMS collaboration aims at improving the muon trigger and tracking performance at the HL-LHC by installing new Gas Electron Multiplier (GEM) chambers in the endcaps of the CMS experiment. Construction and commissioning of GEM chambers for the first muon endcap stations is ramping up in several laboratories using common quality control protocols. The SCRIBE framework is a scalable and cross-platform webbased application for the RD51 Scalable Readout System (SRS) that controls data acquisition and analyzes data in near real time. It has been developed mainly to simplify and standardize measurements of the GEM chamber response uniformities with x-rays across all production sites. SCRIBE works with zero suppression of raw SRS pulse height data. This has increased acquisition rates to 5 kHz for a CMS GEM chamber with 3072 strips and allows strip-by-strip response comparisons with a few hours of data taking. SCRIBE also manages parallel data reconstruction to provide near real-time feedback on the chamber response to the user. Preliminary results on the response performance of the first mass-produced CMS GEM chambers commissioned with SCRIBE are presented

    Modified POF Sensor for Gaseous Hydrogen Fluoride Monitoring in the Presence of Ionizing Radiations

    Get PDF
    This paper describes the development of a sensor designed to detect low concentrations of hydrogen fluoride (HF) in gas mixtures. The sensor employs a plastic optical fiber (POF) covered with a thin layer of glass- like material. HF attacks the glass and alters the fiber transmission capability so that the detection simply requires a LED and a photodiode. The coated POF is obtained by means of low-pressure plasma-enhanced chemical vapor deposition that allows the glass-like film to be deposited at low temperature without damaging the fiber core. The developed sensor will be installed in the recirculation gas system of the resistive plate chamber muon detector of the Compact Muon Solenoid experiment at the Large Hadron Collider accelerator of the European Organization for Nuclear Research (CERN

    Study of the characteristics of GEM detectors for the future FAIR experiment CBM

    Full text link
    Characteristics of triple GEM detector have been studied systematically. The variation of the effective gain and energy resolution of GEM with variation of the applied voltage has been measured with Fe55 X-ray source for different gas mixtures and with different gas flow rates. Long-term test of the GEM has also been performed.Comment: 2 Pages, 6 figure

    Candidate eco-friendly gas mixtures for MPGDs

    Get PDF
    Modern gas detectors for detection of particles require F-based gases for optimal performance.Recent regulations demand the use of environmentally unfriendly F-based gases t o be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements

    Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    Get PDF
    Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation

    Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    Full text link
    Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.Comment: 38 pages, 9 figures, 8 tables. To be submitted to Journal of Instrumentatio

    A study of gas contaminants and interaction with materials in RPC closed loop systems

    Full text link
    Resistive Plate Counters (RPC) detectors at the Large Hadron Collider (LHC) experiments use gas recirculation systems to cope with large gas mixture volumes and costs. In this paper a long-term systematic study about gas purifiers, gas contaminants and detector performance is discussed. The study aims at measuring the lifetime of purifiers with unused and used cartridge material along with contaminants release in the gas system. During the data-taking the response of several RPC double-gap detectors was monitored in order to characterize the correlation between dark currents, filter status and gas contaminants

    Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning

    Full text link
    The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms

    An analysis of materials used in the RPC detector and in the closed loop gas system of CMS at the LHC.

    Get PDF
    The results are reported of the study of materials used in the CERN Closed Loop recirculation gas system currently under test with the RPC muon detectors in the CMS experiment at the LHC. Studies include a sampling campaign in a low-radiation environment (cosmic rays at the CERN ISR test site). We describe the dedicated RPC chamber tests, the chemical analysis of the filters and gas used, and discuss the results of the Closed Loop system

    The Upgrade of the CMS RPC System during the First LHC Long Shutdown

    Get PDF
    The CMS muon system includes in both the barrel and endcap region Resistive Plate Chambers (RPC). They mainly serve as trigger detectors and also improve the reconstruction of muon parameters. Over the years, the instantaneous luminosity of the Large Hadron Collider gradually increases. During the LHC Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the experiments for this, two long shutdown periods are scheduled for 2013-2014 and 2018-2019. The CMS Collaboration is planning several detector upgrades during these long shutdowns. In particular, the muon detection system should be able to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high particle rates. One of the measures to ensure this, is to extend the present RPC system with the addition of a 4th layer in both endcap regions. During the first long shutdown, these two new stations will be equipped in the region |eta|<1.6 with 144 High Pressure Laminate (HPL) double-gap RPCs operating in avalanche mode, with a similar design as the existing CMS endcap chambers. Here, we present the upgrade plans for the CMS RPC system for the fist long shutdown, including trigger simulation studies for the extended system, and details on the new HPL production, the chamber assembly and the quality control procedures.Comment: 9 pages, 6 figures, presented by M.Tytgat at the XI workshop on Resistive Plate Chambers and Related Detectors (RPC2012), INFN - Laboratori Nazionali di Frascati, February 5-10, 201
    • 

    corecore