35 research outputs found

    Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes

    No full text
    The removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being the solution pH (2-9), current density (10-25 mA/cm2), reaction time (15-60 min), MWCNT concentration (25-200 mg/L), and RB5 concentration (25-100 mg/L). The best conditions for optimum removal of RB5 and COD were pH 3, MWCNT concentration 200 mg/L, current density 15 mA/cm2, RB5 concentration 100 mg/L, and reaction time 60 min. Among the main factors, the solution pH for removal of COD and RB5 and the current density for energy consumption had the highest impact. The 3D system generated more H2O2 and OH radicals compared with a two-dimensional (2D) system because the MWCNTs act as microelectrodes in the optimal conditions. In the 3D process, the production of high levels of reactive species led to an increase in the degradation of RB5 into aromatic compounds and various acids. © 2019 American Society of Civil Engineers

    Binding assessment of two arachidonic-based synthetic derivatives of adrenalin with β-lactoglobulin: Molecular modeling and chemometrics approach

    Full text link
    International audienceA computational approach to predict the main binding modes of two adrenalin derivatives, arachidonoyl adrenalin (AA-AD) and arachidonoyl noradrenalin (AA-NOR) with the beta-lactoglubuline (BLG) as a nano-milk protein carrier is presented and assessed by comparison to the UV-Vis absorption spectroscopic data using chemometric analysis. Analysis of the spectral data matrices by using the multivariate curve resolution-alternating least squares (MCR-ALS) algorithm led to the pure concentration calculation and spectral profiles resolution of the chemical constituents and the apparent equilibrium constants computation. The negative values of entropy and enthalpy changes for both compound indicated the essential role of hydrogen bonding and van der Waals interactions as main driving forces in stabilizing protein ligand complex. Computational studies predicted that both derivatives are situated in the calyx pose and remained in that pose during the whole time of simulation with no any significant protein structural changes which pointed that the BLG could be considered as a suitable carrier for these catecholamine compounds

    Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes

    No full text
    The removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being the solution pH (2-9), current density (10-25mA/cm2), reaction time (15-60min), MWCNT concentration (25-200mg/L), and RB5 concentration (25-100mg/L). The best conditions for optimum removal of RB5 and COD were pH 3, MWCNT concentration 200mg/L, current density 15mA/cm2, RB5 concentration 100mg/L, and reaction time 60min. Among the main factors, the solution pH for removal of COD and RB5 and the current density for energy consumption had the highest impact. The 3D system generated more H2O2 and OH radicals compared with a two-dimensional (2D) system because the MWCNTs act as microelectrodes in the optimal conditions. In the 3D process, the production of high levels of reactive species led to an increase in the degradation of RB5 into aromatic compounds and various acids
    corecore