2,497 research outputs found

    Two liquid states of matter: A new dynamic line on a phase diagram

    Full text link
    It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "non-rigid" liquid. Rigid to non-rigid transition corresponds to the condition {\tau} ~ {\tau}0, where {\tau}is liquid relaxation time and {\tau}0 is the minimal period of transverse quasi-harmonic waves. This condition defines a new dynamic line on the phase diagram, and corresponds to the loss of shear stiffness of a liquid at all available frequencies, and consequently to the qualitative change of many important liquid properties. We analyze the dynamic line theoretically as well as in real and model liquids, and show that the transition corresponds to the disappearance of high-frequency sound, qualitative changes of diffusion and viscous flow, increase of particle thermal speed to half of the speed of sound and reduction of the constant volume specific heat to 2kB per particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal: it separates two liquid states at arbitrarily high pressure and temperature, and exists in systems where liquid - gas transition and the critical point are absent overall.Comment: 21 pages, 8 figure

    Phase separation and vortex states in binary mixture of Bose-Einstein condensates in the trapping potentials with displaced centers

    Full text link
    The system of two simultaneously trapped codensates consisting of 87Rb^{87}Rb atoms in two different hyperfine states is investigated theoretically in the case when the minima of the trapping potentials are displaced with respect to each other. It is shown that the small shift of the minima of the trapping potentials leads to the considerable displacement of the centers of mass of the condensates, in agreement with the experiment. It is also shown that the critical angular velocities of the vortex states of the system drastically depend on the shift and the relative number of particles in the condensates, and there is a possibility to exchange the vortex states between condensates by shifting the centers of the trapping potentials.Comment: 4 pages, 2 figure

    Positive energy unitary irreducible representations of D=6 conformal supersymmetry

    Get PDF
    We give a constructive classification of the positive energy (lowest weight) unitary irreducible representations of the D=6 superconformal algebras osp(8*/2N). Our results confirm all but one of the conjectures of Minwalla (for N=1,2) on this classification. Our main tool is the explicit construction of the norms of the states that has to be checked for positivity. We give also the reduction of the exceptional UIRs.Comment: 27 pages, TeX with harvmac, amssym.def, amssym.tex; v.2: minor corrections and references added; v.3: minor corrections; v.4: to appear in J. Phys.

    Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up

    Get PDF
    Waves can drastically transform a sea ice cover by inducing break-up over vast distances in the course of a few hours. However, relatively few detailed studies have described this phenomenon in a quantitative manner, and the process of sea ice break-up by waves needs to be further parameterized and verified before it can be reliably included in forecasting models. In the present work, we discuss sea ice break-up parameterization and demonstrate the existence of an observational threshold separating breaking and non-breaking cases. This threshold is based on information from two recent field campaigns, supplemented with existing observations of sea ice break-up. The data used cover a wide range of scales, from laboratory-grown sea ice to polar field observations. Remarkably, we show that both field and laboratory observations tend to converge to a single quantitative threshold at which the wave-induced sea ice break-up takes place, which opens a promising avenue for robust parametrization in operational forecasting models.Comment: 18 pages, 8 figures, 1 tabl

    Supersymmetry of Tensionless Rotating Strings in AdS_5 x S^5, and Nearly-BPS Operators

    Full text link
    It is shown that a class of rotating strings in AdS_5 x S^5 with SO(6) angular momenta (J,J',J') preserve 1/8-supersymmetry for large J,J', in which limit they are effectively tensionless; when J=0, supersymmetry is enhanced to 1/4. These results imply that recent checks of the AdS/CFT correspondence actually test a nearly-BPS sector.Comment: 12 pages, no figures; v2: new section on CFT operators and new references added, discussion section and acknowledgements modified, abstract rephrashe

    Monte Carlo simulation of a two-dimensional continuum Coulomb gas

    Full text link
    We study the classical two-dimensional Coulomb gas model for thermal vortex fluctuations in thin superconducting/superfluid films by Monte Carlo simulation of a grand canonical vortex ensemble defined on a continuum. The Kosterlitz-Thouless transition is well understood at low vortex density, but at high vortex density the nature of the phase diagram and of the vortex phase transition is less clear. From our Monte Carlo data we construct phase diagrams for the 2D Coulomb gas without any restrictions on the vortex density. For negative vortex chemical potential (positive vortex core energy) we always find a Kosterlitz-Thouless transition. Only if the Coulomb interaction is supplemented with a short-distance repulsion, a first order transition line is found, above some positive value of the vortex chemical potential.Comment: 10 pages RevTeX, 7 postscript figures included using eps
    • …
    corecore