808 research outputs found

    Detection of organic materials by spectrometric radiography method

    Full text link
    In this paper we report a spectrometric approach to dual-energy digital radiography that has been developed and applied to identify specific organic substances and discern small differences in their effective atomic number. An experimental setup has been designed, and a theoretical description proposed based on the experimental results obtained. The proposed method is based on application of special reference samples made of materials with different effective atomic number and thickness, parameters known to affect X-ray attenuation in the low-energy range. The results obtained can be used in the development of a new generation of multi-energy customs or medical X-ray scanners.Comment: 6 pages, 2 tables, 5 figures, will be presented at the Workshop on X-Ray Imaging, 22-24 October, 2008, Dresden, German

    Direct reconstruction of the effective atomic number of materials by the method of multi-energy radiography

    Full text link
    A direct method is proposed for reconstruction of the effective atomic number by means of multi-energy radiography of the material. The accuracy of the method is up to 95% . Advantages over conventional radiographic methods, which ensure accuracy of just about 50%, are discussed. A physical model has been constructed, and general expressions have been obtained for description of the effective atomic number in a two-energy monitoring scheme. A universal dependence has been predicted for the effective atomic number as a function of relative (two-energy) radiographic reflex. The established theoretical law is confirmed by the experimental data presented. The proposed development can find multiple applications in non-destructive testing and related fields, including those in the civil sphere as well as anti-terrorist activities.Comment: 15 pages LaTeX, 4 figures, the paper accepted in Nuclear Methods and Instruments in Physics Research, Section

    Horn fragments of the Halpern-Shoham Interval Temporal Logic

    Get PDF
    We investigate the satisfiability problem for Horn fragments of the Halpern-Shoham interval temporal logic depending on the type (box or diamond) of the interval modal operators, the type of the underlying linear order (discrete or dense), and the type of semantics for the interval relations (reflexive or irreflexive). For example, we show that satisfiability of Horn formulas with diamonds is undecidable for any type of linear orders and semantics. On the contrary, satisfiability of Horn formulas with boxes is tractable over both discrete and dense orders under the reflexive semantics and over dense orders under the irreflexive semantics but becomes undecidable over discrete orders under the irreflexive semantics. Satisfiability of binary Horn formulas with both boxes and diamonds is always undecidable under the irreflexive semantics
    corecore