
ar
X

iv
:1

60
4.

03
51

5v
3

 [c
s.L

O
]

9
M

ar
 2

01
7

0

Horn Fragments of the Halpern-Shoham Interval Temporal Logic

DAVIDE BRESOLIN, University of Bologna, Italy

AGI KURUCZ, King’s College London, UK

EMILIO MUÑOZ-VELASCO, University of Malaga, Spain

VLADISLAV RYZHIKOV, Free University of Bozen-Bolzano, Italy

GUIDO SCIAVICCO, University of Murcia, Spain

MICHAEL ZAKHARYASCHEV, Birkbeck, University of London, UK

We investigate the satisfiability problem for Horn fragments of the Halpern-Shoham interval temporal logic
depending on the type (box or diamond) of the interval modal operators, the type of the underlying linear
order (discrete or dense), and the type of semantics for the interval relations (reflexive or irreflexive). For
example, we show that satisfiability of Horn formulas with diamonds is undecidable for any type of linear
orders and semantics. On the contrary, satisfiability of Horn formulas with boxes is tractable over both dis-
crete and dense orders under the reflexive semantics and over dense orders under the irreflexive semantics,
but becomes undecidable over discrete orders under the irreflexive semantics. Satisfiability of binary Horn
formulas with both boxes and diamonds is always undecidable under the irreflexive semantics.

Categories and Subject Descriptors: I.2.4 [Knowledge Representation Formalisms and Methods]: rep-
resentation languages; F.4.1 [Mathematical Logic]: temporal logic; F.2.2 [Nonnumerical Algorithms
and Problems]: complexity of proof procedures

General Terms: languages, theory.

Additional Key Words and Phrases: temporal logic, modal logic, computational complexity.

ACM Reference Format:
Davide Bresolin, Agi Kurucz, Emilio Muñoz-Velasco, Vladislav Ryzhikov, Guido Sciavicco, and Michael Za-
kharyaschev. 2016. Horn Fragments of the Halpern-Shoham Interval Temporal Logic. ACM Trans. Comput.
Logic 0, 0, Article 0 (0), 38 pages.
DOI:http://dx.doi.org/10.1145/0

1. INTRODUCTION

Our concern in this paper is the satisfiability problem for Horn fragments of the inter-
val temporal (or modal) logic introduced by Halpern and Shoham [1991] and known
since then under the moniker HS. Syntactically, HS is a classical propositional logic
with modal diamond operators of the form ⟨R⟩, where R is one of Allen’s [1983] twelve
interval relations: After, Begins, Ends, During, Later, Overlaps and their inverses. The
propositional variables of HS are interpreted by sets of closed intervals [i, j] of some
flow of time (such as Z, R, etc.), and a formula ⟨R⟩ϕ is regarded to be true in [i, j] if and
only if ϕ is true in some interval [i′, j′] such that [i, j]R[i′, j′] in Allen’s interval algebra.

The authors acknowledge the support from the Italian INDAM-GNCS project 2016 ‘Logic, Automata, and
Games for Self-Adapting Systems’ (D. Bresolin, G. Sciavicco), the Spanish project TIN15-70266-C2-P-1
(E. Muñoz-Velasco), the Spanish fellowship program ‘Ramon y Cajal’ RYC-2011-07821 (G. Sciavicco), and
the EPSRC UK project EP/M012670/1 ‘iTract: Islands of Tractability in Ontology-Based Data Access’ (M. Za-
kharyaschev).

DOI:http://dx.doi.org/10.1145/0

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/132844952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0:2 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

The elegance and expressive power of HS have attracted attention of the tempo-
ral and modal communities, as well as many other areas of computer science, AI,
philosophy and linguistics; e.g., [Allen 1984; Cau et al. 2002; Zhou and Hansen 2004;
Cimatti et al. 2015; Della Monica et al. 2011; Pratt-Hartmann 2005]. However,
promising applications have been hampered by the fact, already discovered by
Halpern and Shoham [1991], that HS is highly undecidable (for example, validity over
Z and R is Π1

1-hard).
A quest for ‘tame’ fragments of HS began in the 2000s, and has resulted in a sub-

stantial body of literature that identified a number of ways of reducing the expressive
power of HS:

— Constraining the underlying temporal structures. Montanari et al. [2002] inter-
preted their Split Logic SL over structures where every interval can be chopped
into at most a constant number of subintervals. SL shares the syntax with HS and
CDT [Venema 1991] and can be seen as their decidable variant.

— Restricting the set of modal operators. Complete classifications of decidable and un-
decidable fragments of HS have been obtained for finite linear orders (62 decidable
fragments), discrete linear orders (44), N (47), Z (44), and dense linear orders (130).
For example, over finite linear orders, there are two maximal decidable fragments
with the relations A, Ā,B, B̄ and A, Ā,E, Ē, both of which are non-primitive recursive.
Smaller fragments may have lower complexity: for example, the B, B̄, L, L̄ fragment
is NP-complete,A, Ā is NEXPTIME-complete, while A,B, B̄, L̄ is EXPSPACE-complete.
For more details, we refer the reader to [Lodaya 2000; Montanari et al. 2010b;
Bresolin et al. 2012a; Bresolin et al. 2012b; Bresolin et al. 2015] and references
therein.

— Softening semantics. Allen [1983] and Halpern and Shoham [1991] defined the se-
mantics of interval relations using the irreflexive <: for example, [x, y]L[x′, y′] if
and only if y < x′. By ‘softening’ < to reflexive ≤ one can make the undecidable
D fragment of HS [Marcinkowski and Michaliszyn 2014] decidable and PSPACE-
complete [Montanari et al. 2010a].

— Relativisations. The results of Schwentick and Zeume [2010] imply that some un-
decidable fragments of HS become decidable if one allows models in which not all
the possible intervals of the underlying linear order are present.

— Restricting the nesting of modal operators. Bresolin et al. [2014a] defined a decid-
able fragment of CDT that mimics the behaviour of the (NP-complete) Bernays-
Schöenfinkel fragment of first-order logic, and one can define a similar fragment of
HS.

— Coarsening relations. Inspired by Golumbic and Shamir’s [1993] coarser interval
algebra, Muñoz-Velasco et al. [2015] reduce the expressive power of HS by defining
interval relations that correspond to (relational) unions of Allen’s relations. They
proposed two coarsening schemata, one of which turned out to be PSPACE-complete.

In this article, we analyse a different way of taming the expressive power of
logic formalisms while retaining their usefulness for applications, viz., taking Horn
fragments. Universal first-order Horn sentences ∀x(A1 ∧ . . . ∧ An → A0) with
atomic Ai are rules (or clauses) of the programming language Prolog. Although Pro-
log itself is undecidable due to the availability of functional symbols, its function-
free subset Datalog, designed for interacting with databases, is EXPTIME-complete
for combined complexity, even PSPACE-complete when restricted to predicates of
bounded arity, and P-complete in the propositional case [Dantsin et al. 2001]. Horn
fragments of the Web Ontology Language OWL 2 [W3C OWL Working Group 2012]
such as the tractable profiles OWL 2 QL and OWL 2 EL were designed for ontology-
based data access via query rewriting and applications that require ontologies

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:3

with very large numbers of properties and classes (e.g., SNOMED CT). More
expressive decidable Horn knowledge representation formalisms have been de-
signed in Description Logic [Hustadt et al. 2007; Krötzsch et al. 2013], in particu-
lar, temporal description logics; see [Lutz et al. 2008; Artale et al. 2014] and refer-
ences therein. Horn fragments of modal and temporal logics have also been consid-
ered [Fariñas Del Cerro and Penttonen 1987; Chen and Lin 1993; Chen and Lin 1994;
Nguyen 2004; Artale et al. 2013].

In the context of the Halpern-Shoham logic, we observe first that any HS-formula
can be transformed to an equisatisfiable formula in clausal normal form:

ϕ ::= λ | ¬λ | [U](¬λ1 ∨ · · · ∨ ¬λn ∨ λn+1 ∨ · · · ∨ λn+m) | ϕ1 ∧ ϕ2, (1)

where U is the universal relation (which can be expressed via the interval relations as
[U]ψ =

∧

R
(ψ ∧ [R]ψ ∧ [R̄]ψ)), and λ and the λi are (positive temporal) literals given by

λ ::= ⊤ | ⊥ | p | ⟨R⟩λ | [R]λ, (2)

with R being one of the interval relations and p a propositional variable and [R] the
dual of ⟨R⟩. We now define the Horn fragment HShorn of HS as comprising the formulas
given by the grammar

ϕ ::= λ | [U](λ1 ∧ · · · ∧ λk → λ) | ϕ1 ∧ ϕ2. (3)

The conjuncts of the form λ are called the initial conditions of ϕ, and those of the form
[U](λ1 ∧ · · · ∧ λk → λ) the clauses of ϕ. We also consider the HS✷

horn fragment of HShorn,
whose formulas do not contain occurrences of diamond operators ⟨R⟩, and the HS✸

horn
fragment whose formulas do not contain box operators [R]. We denote by HScore (HS✷

core
or HS✸

core) the fragment of HShorn (respectively, HS✷

horn or HS✸

horn) with only clauses of
the form [U](λ1 → λ2) and [U](λ1 ∧ λ2 → ⊥). We remind the reader that propositional
Horn logic is P-complete, while the (core) logic of binary Horn clauses is NLOGSPACE-
complete.

We illustrate the expressive power of the Horn fragments introduced above by a few
examples describing constraints on a summer school timetable. The clause

[U](⟨D̄⟩MorningSession∧ AdvancedCourse→ ⊥)

says that advanced courses cannot be given during the morning sessions defined by

[U](⟨B̄⟩LectureDay ∧ ⟨A⟩Lunch↔MorningSession).

The clause

[U](teaches→ [D]teaches)

claims that teaches is downward hereditary (or stative) in the sense that if it holds in
some interval, then it also holds in all of its sub-intervals. If, instead, we want to state
that teaches is upward hereditary (or coalesced) in the sense that teaches holds in any
interval covered by sub-intervals where it holds, then we can use the clause1

[U]
(

[D](⟨O⟩teaches ∨ ⟨D̄⟩teaches) ∧ ⟨B⟩teaches ∧ ⟨E⟩teaches→ teaches
)

.

By removing the last two conjuncts on the left-hand side of this clause, we make sure
that teaches is both upward and downward hereditary. For a discussion of these notions
in temporal databases, consult [Böhlen et al. 1996; Terenziani and Snodgrass 2004].
Note also that all of the above example clauses—apart from the implication ← in the
second one—are equisatisfiable to HS✷

horn-formulas (see Section 2 for details).

1Here we assume that the interval relations are reflexive; see Section 2.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:4 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

Table I. Horn and core HS-satisfiability over various linear orders.

Irreflexive semantics Reflexive semantics

HShorn undecidable∗ (Thm. 4.3)

HScore undecidable∗ (Thm. 4.4) PSPACE-hard∗ (Thm. 4.1)

decidable?

HS✸

horn undecidable∗ (Thm. 4.3)

HS✸
core decidable?

discrete: undecidable (Thm. 4.5)
HS✷

horn P-complete (Thm. 3.5)
dense: P-complete (Thm. 3.5)

discrete: PSPACE-hard (Thm. 4.2)

HS✷
core decidable? in P (Thm. 3.5)

dense: in P (Thm. 3.5)

∗actually holds for any class of linear orders containing unbounded orders.

Our contribution. In this article, we investigate the satisfiability problem for the
Horn fragments of HS along two main axes. We consider:

— both the standard ‘irreflexive’ semantics for HS-formulas given by Halpern and
Shoham [1991] and its reflexive variant

— over classes of discrete and dense linear orders (such as (Z,≤) and (R,≤)), and
general linear orders.

The obtained results are summarised in Table I. Most surprising is the computational
behaviour of HS✷

horn, which turns out to be undecidable over discrete orders under the
irreflexive semantics (Theorem 4.5), but becomes tractable under all other choices of
semantics (Theorem 3.5). The tractability result, coupled with the ability of HS✷

horn-
formulas to express interesting temporal constraints, suggests that HS✷

horn can form a
basis for tractable interval temporal ontology languages that can be used for ontology-
based data access over temporal databases or streamed data. Some preliminary steps
in this direction have been made by Artale et al. [2015b] and Kontchakov et al. [2016].
We briefly discuss applications of HS✷

horn for temporal ontology-based data access in
Section 3.1.

On the other hand, the undecidability of HS✷

horn over discrete orders with the ir-
reflexive semantics prompted us to investigate possible sources of high complexity.

— What is the crucial difference between the irreflexive discrete and other semantic
choices? In irreflexive models, one can single out punctual intervals (with coincident
endpoints) using a very simple (HS✷

core) formula [R]⊥, where R is any of E, B, D.
Looking at HS-models from the 2D perspective as in Fig. 1, we see that the punctual
intervals form a diagonal. If in addition the underlying linear order is discrete, then
this diagonal might provide us with some kind of ‘horizontal’ and ‘vertical’ counting
capabilities along the 2D grid, even though the horizontal and vertical ‘next-time
operators’ are not available in HS. It is a well-known fact about 2D modal product

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:5

logics that, if such a ‘unique controllable diagonal’ is expressible in a logic, then
the satisfiability problem for the logic is of high complexity [Gabbay et al. 2003].
Here we show that HS✷

horn has sufficient counting power to make it undecidable
(Theorem 4.5), and that even the seemingly very limited expressiveness of HS✷

core is
still enough to make it PSPACE-hard (Theorem 4.2).

— When ✸-operators are available, even if the models are reflexive and/or dense, one
can generate a unique sequence of ‘diagonal-squares’ (like on a chessboard) and
perform some horizontal and vertical counting on it. In particular, bimodal log-
ics over products of (reflexive/irreflexive) linear orders [Marx and Reynolds 1999;
Reynolds and Zakharyaschev 2001] and also over products of various transitive (not
necessarily linear) relations [Gabelaia et al. 2005b] are all shown to be undecidable
in this way. It follows that full Boolean HS-satisfiability with the reflexive semantics
over any unbounded timelines is undecidable. Here we generalise this methodology
and show that undecidability still holds even within the HS✸

horn-fragment (Theo-
rem 4.3).

— We also analyse to what extent the above techniques can be applied within the
core fragments having ✸-operators. We develop a few new ‘tricks’ that encode a cer-
tain degree of ‘Horn-ness’ to prove intractable lower bounds for HScore-satisfiability:
undecidability with the irreflexive semantics (Theorem 4.4) and PSPACE-hardness
with the reflexive one (Theorem 4.1).

The undecidability of HShorn under the irreflexive semantics was established in the
conference paper [Bresolin et al. 2014b], and the tractability of HS✷

horn over (Z,≤) un-
der the reflexive semantics in [Artale et al. 2015b].

2. SEMANTICS AND NOTATION

HS-formulas are interpreted over the set of intervals of any linear order2 T = (T,≤)
(where ≤ is a reflexive, transitive, antisymmetric and connected binary relation on T).
As usual, we use x < y as a shortcut for ‘x ≤ y and x ̸= y’. The linear order T is

— dense if, for any x, y ∈ T with x < y, there exists z such that x < z < y;
— discrete if every non-maximal x ∈ T has an immediate <-successor, and every non-

minimal x ∈ T has an immediate <-predecessor.

Thus, the rationals (Q,≤) and reals (R,≤) are dense orders, while the integers (Z,≤)
and the natural numbers (N,≤) are discrete. Any finite linear order is obviously dis-
crete. We denote by Lin the class of all linear orders, by Fin the class of all finite linear
orders, by Dis the class of all discrete linear orders, and by Den the class of all dense
linear orders. We say that a linear order contains an infinite ascending (descending)
chain if it has a sequence of points xn, n < ω, such that x0 < x1 < · · · < xn < . . .
(respectively, x0 > x1 > · · · > xn > . . .). Clearly, any infinite linear order contains an
infinite ascending or an infinite descending chain.

Following Halpern and Shoham [1991], by an interval in T we mean any ordered
pair ⟨x, y⟩ such that x ≤ y, and denote by int(T) the set of all intervals in T. Note that
int(T) contains all the punctual intervals of the form ⟨x, x⟩, which is often referred to as
the non-strict semantics. Under the strict semantics adopted by Allen [1983], punctual
intervals are disallowed. Most of our results hold for both semantics, and we shall
comment on the cases where the strict semantics requires a special treatment. We

2Originally, Halpern and Shoham [1991] also consider more complex temporal structures based on partial
orders with linear intervals such that, whenever x ≤ y, the closed interval {z ∈ T | x ≤ z ≤ y} is linearly
ordered by ≤. In particular, trees are temporal structures in this sense.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:6 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

define the interval relations over int(T) in the same way as Halpern and Shoham [1991]
by taking (see Fig. 1):

— ⟨x1, y1⟩A⟨x2, y2⟩ iff 3 y1 = x2 and x2 < y2; (After)
— ⟨x1, y1⟩B⟨x2, y2⟩ iff x1 = x2 and y2 < y1; (Begins)
— ⟨x1, y1⟩E⟨x2, y2⟩ iff x1 < x2 and y1 = y2; (Ends)
— ⟨x1, y1⟩D⟨x2, y2⟩ iff x1 < x2 and y2 < y1; (During)
— ⟨x1, y1⟩L⟨x2, y2⟩ iff y1 < x2; (Later)
— ⟨x1, y1⟩O⟨x2, y2⟩ iff x1 < x2 < y1 < y2; (Overlaps)
— ⟨x1, y1⟩Ā⟨x2, y2⟩ iff y2 = x1 and x2 < y2;
— ⟨x1, y1⟩B̄⟨x2, y2⟩ iff x1 = x2 and y1 < y2;
— ⟨x1, y1⟩Ē⟨x2, y2⟩ iff x2 < x1 and y1 = y2;
— ⟨x1, y1⟩D̄⟨x2, y2⟩ iff x2 < x1 and y1 < y2;
— ⟨x1, y1⟩L̄⟨x2, y2⟩ iff y2 < x1;
— ⟨x1, y1⟩Ō⟨x2, y2⟩ iff x2 < x1 < y2 < y1.

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣i

iA j j

iB j j

iE j j

iD j j

i L j j

iO j j

i Ā j j

i B̄ j j

i Ē j j

i D̄ j j

i L̄ j j

i Ō j j
✲

✻

(T,≤)

(T,≤)

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

!

L
B̄ AD̄ O

Ē E

Ō

D

B

Ā

L̄

Fig. 1. The interval relations and their 2D representation.

Observe that all of these relations are irreflexive, so we refer to the definition above
as the irreflexive semantics. As an alternative, we also consider the reflexive semantics,
which is obtained by replacing each < with ≤. We write T(≤) or T(<) to indicate that
the semantics is reflexive or, respectively, irreflexive. When formulating results where
the choice of semantics for each interval relation does not matter, we use the term
arbitrary semantics.4

As observed by Venema [1990], if we represent intervals ⟨x, y⟩ ∈ int(T) by points
(x, y) of the ‘north-western’ subset of the two-dimensional Cartesian product T × T ,

3It is to be noted that there exist slightly different versions of A and Ā in the literature. All of our results
hold with those versions as well.
4It may be of interest to note that the query language SQL:2011 has seven interval temporal operators three
of which are under the reflexive semantics and four under the irreflexive one [Kulkarni and Michels 2012].

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:7

then int(T) together with the interval relations (under any semantics) forms a multi-
modal Kripke frame (see Fig. 1). We denote it by FT and call an HS-frame.5 Given a
linear order T, an HS-model based on T is a pair M = (FT, ν), where FT is an HS-
frame and ν a function from the set P of propositional variables to subsets of int(T).
The truth-relation M, ⟨x, y⟩ |= ϕ, for an HShorn-formula ϕ, is defined inductively as
follows, where R is any interval relation:

— M, ⟨x, y⟩ |= ⊤ and M, ⟨x, y⟩ ̸|= ⊥, for any ⟨x, y⟩ ∈ int(T);
— M, ⟨x, y⟩ |= p iff ⟨x, y⟩ ∈ ν(p), for any p ∈ P ;
— M, ⟨x, y⟩ |= ⟨R⟩λ iff there exists ⟨x′, y′⟩ such that ⟨x, y⟩R⟨x′, y′⟩ and M, ⟨x′, y′⟩ |= λ;
— M, ⟨x, y⟩ |= [R]λ iff, for every ⟨x′, y′⟩ with ⟨x, y⟩R⟨x′, y′⟩, we have M, ⟨x′, y′⟩ |= λ;
— M, ⟨x, y⟩ |= [U](λ1 ∧ · · · ∧ λk → λ) iff, for every ⟨x′, y′⟩ ∈ int(T) with M, ⟨x′, y′⟩ |= λi

for i = 1, . . . , k, we have M, ⟨x′, y′⟩ |= λ;
— M, ⟨x, y⟩ |= ϕ1 ∧ ϕ2 iff M, ⟨x, y⟩ |= ϕ1 and M, ⟨x, y⟩ |= ϕ2.

A model M based on T satisfies ϕ if M, ⟨x, y⟩ |= ϕ, for some ⟨x, y⟩ ∈ int(T). Given a
class C of linear orders, we say that a formula ϕ is C-satisfiable (respectively, C(≤)- or
C(<)-satisfiable) if it is satisfiable in an HS-model based on some order from C under
the arbitrary (respectively, reflexive or irreflexive) semantics.

To facilitate readability, we use the following syntactic sugar, where ψ = λ1∧ · · ·∧λk:

— [U](ψ → ¬λ) as an abbreviation for [U](ψ ∧ λ→ ⊥);
— [U]

(

ψ → λ′1 ∧ · · · ∧ λ′n) as an abbreviation for

n
∧

i=1

[U]
(

ψ → λ′i);

— [U]
(

ψ → [R](λ′1 ∧ · · · ∧ λ′n → λ)
)

as an abbreviation for

[U](ψ → [R]p) ∧ [U](p ∧ λ′1 ∧ · · · ∧ λ′n → λ),

where p is a fresh variable, and similarly for ⟨R⟩ in place of [R].

Note also that [U](⟨R⟩λ ∧ ψ → λ′) is equivalent to [U](λ → [R̄](ψ → λ′)). This allows
us to use ⟨R⟩ on the left-hand side of the clauses in HS✷

horn-formulas, and [R] on the
right-hand side of the clauses in HS✸

horn-formulas.

3. TRACTABILITY OF HS
✷

HORN

Let T = (T,≤) be a linear order, ⟨a, b⟩ ∈ int(T), and let ϕ be an HS✷

horn-formula. Suppose
we want to check whether there exists a model M based on T such that M, ⟨a, b⟩ |= ϕ
under the reflexive (or irreflexive) semantics, in which case we will say that ϕ is ⟨a, b⟩-
satisfiable in T(≤) (respectively, T(<)). Let ✁ ∈ {≤, <}. We set

Vϕ = {λ@⟨a, b⟩ | λ an initial condition of ϕ} ∪ {⊤@⟨x, y⟩ | ⟨x, y⟩ ∈ int(T)}

and denote by cl(Vϕ) the result of applying non-recursively the following rules to Vϕ,
where R is any interval relation in T(✁):

(cl1) if [R]λ@⟨x, y⟩ ∈ Vϕ, then we add to Vϕ all λ@⟨x′, y′⟩ such that ⟨x′, y′⟩ ∈ int(T) and
⟨x, y⟩R⟨x′, y′⟩;

(cl2) if λ@⟨x′, y′⟩ ∈ Vϕ for all ⟨x′, y′⟩ ∈ int(T) such that ⟨x, y⟩R⟨x′, y′⟩ and [R]λ occurs in
ϕ, then we add [R]λ@⟨x, y⟩ to Vϕ;

5Note that if we consider T = (T,≤) as a unimodal Kripke frame, then
(

int(T), E, B̄
)

with the reflexive
semantics is an expanding subframe of the modal product frame T×T; see [Gabbay et al. 2003, Section 3.9].

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:8 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

.

.

.

(0, 0)
p

[Ē]p

pp

(1, 1)

[Ē]q

qqqq

(2, 2)

[Ē]p

ppppp

Fig. 2. The sequence of the canonical model construction for (Z,≤).

(cl3) if [U](λ1 ∧ · · · ∧ λk → λ) is a clause of ϕ and λi@⟨x, y⟩ ∈ Vϕ, for 1 ≤ i ≤ k, then we
add λ@⟨x, y⟩ to Vϕ.

Now, we set cl0(Vϕ) = Vϕ and, for any successor ordinal α+ 1 and limit ordinal β,

clα+1(Vϕ) = cl(clα(Vϕ)), clβ(Vϕ) =
⋃

α<β

clα(Vϕ) and cl∗(Vϕ) =
⋃

γ an ordinal

clγ(Vϕ).

Define an HS-model K
⟨a,b⟩
ϕ = (FT, ν) based on T(✁) by taking, for every variable p,

ν(p) = {⟨x, y⟩ | p@⟨x, y⟩ ∈ cl∗(Vϕ)}.

Example 3.1. Let T = (Z,≤). The model K
⟨0,0⟩
ϕ based on T(<) for the HS✷

horn-formula

ϕ = p ∧ [U]([E]p ∧ ⟨E⟩⊤ → p) ∧ [U]([E]q ∧ ⟨E⟩⊤ → q) ∧

[U](⟨Ē⟩[B][Ē]p→ q) ∧ [U](⟨Ē⟩[B][Ē]q → p)

is shown in Fig. 2. Note that the construction of K
⟨0,0⟩
ϕ requires ω2 applications of cl.

THEOREM 3.2. An HS✷

horn-formula ϕ is ⟨a, b⟩-satisfiable in T(✁) if and only if
⊥@⟨x, y⟩ /∈ cl∗(Vϕ), for any ⟨x, y⟩. Furthermore, if some model M over T(✁) satis-

fies ϕ at ⟨a, b⟩, then K
⟨a,b⟩
ϕ , ⟨a, b⟩ |= ϕ and, for any ⟨x, y⟩ ∈ int(T) and any variable p,

K
⟨a,b⟩
ϕ , ⟨x, y⟩ |= p implies M, ⟨x, y⟩ |= p.

PROOF. Suppose ⊥@⟨x, y⟩ /∈ cl∗(Vϕ). It is easily shown by induction that we have

λ@⟨x, y⟩ ∈ cl∗(Vϕ) iff K
⟨a,b⟩
ϕ , ⟨x, y⟩ |= λ. It follows that K

⟨a,b⟩
ϕ , ⟨a, b⟩ |= ϕ. Suppose also

that M, ⟨a, b⟩ |= ϕ, for some model M over T(✁). Denote by V the set of λ@⟨x, y⟩ such
that λ occurs in ϕ, ⟨x, y⟩ ∈ int(T) and M, ⟨x, y⟩ |= λ. Clearly, V is closed under the rules
for cl, and so cl∗(Vϕ) ⊆ V. This observation also shows that if ϕ is ⟨a, b⟩-satisfiable in
T(✁) then ⊥@⟨x, y⟩ /∈ cl∗(Vϕ). ❑

If ⊥@⟨x, y⟩ /∈ cl∗(Vϕ), we call K
⟨a,b⟩
ϕ the canonical model of ϕ based on T(✁). Our

next aim is to show that if (i) T ∈ Dis and ✁ is ≤, or (ii) T ∈ Den and ✁ ∈ {≤, <},
then there is a bounded-size multi-modal Kripke frame Z⟨a,b⟩ with a set of worlds Z
and an accessibility relation R, for every interval relation R, and a surjective map
f : int(T)→ Z such that the following conditions hold:

(p1) if ⟨x, y⟩R⟨x′, y′⟩ then f(⟨x, y⟩)Rf(⟨x′, y′⟩);
(p2) if zRz′ then, for every ⟨x, y⟩ ∈ f−1(z), there is ⟨x′, y′⟩ ∈ f−1(z′) with ⟨x, y⟩R⟨x′, y′⟩;
(p3) for any variable p and any z ∈ Z, either f−1(z) ∩ ν(p) = ∅ or f−1(z) ⊆ ν(p).

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:9

ζ[j],[j]

ζ[i],[i]

ζ(i,j),(i,j)

ζ(j,+∞),(j,+∞)

ζ(−∞,i),(−∞,i)

ζ(−∞,i),[i]

i ̸= j

ζ[i],[j]

ζ(j,+∞),(j,+∞)

ζ(−∞,i),(−∞,i)

ζ(−∞,i),[i]

i = j

Fig. 3. Zones in the canonical models over Dis(≤) and Den(≤).

In modal logic, a surjection respecting the first two properties is called a p-morphism
(or bounded morphism) from FT to Z⟨a,b⟩ (see, e.g., [Chagrov and Zakharyaschev 1997;
Goranko and Otto 2006]). It is well-known that if f is a p-morphism from FT to Z⟨a,b⟩

and ϕ is f(⟨a, b⟩)-satisfiable in Z⟨a,b⟩ then ϕ is ⟨a, b⟩-satisfiable in T(✁). Moreover, if the

third condition also holds and K
⟨a,b⟩
ϕ , ⟨a, b⟩ |= ϕ, then ϕ is f(⟨a, b⟩)-satisfiable in Z⟨a,b⟩.

Indeed, in this case f is a p-morphism from the canonical model K
⟨a,b⟩
ϕ onto the model

(Z⟨a,b⟩, ν′), where ν′(p) = {z | f−1(z) ⊆ ν(p)}.
To construct Z⟨a,b⟩ and f , we require a few definitions. If a < b, we denote by secT(a, b)

the set of non-empty subsets of T of the form (−∞, a), [a, a], (a, b), [b, b] and (b,∞), where
(−∞, a) = {x ∈ T | x < a} and (b,∞) = {x ∈ T | x > b}. If a = b, then secT(a, b) consists
of non-empty sets of the form (−∞, a), [a, a] and (a,∞). We call each σ ∈ secT(a, b) an
(a, b)-section of T. Clearly, secT(a, b) is a partition of T . Given σ,σ′ ∈ secT(a, b), we write
σ ≼ σ′ if there exist x ∈ σ and x′ ∈ σ′ such that ⟨x, x′⟩ ∈ int(T). The definition of Z⟨a,b⟩

depends on the type of the linear order T and the semantics for the interval relations.

Case T(≤), for T ∈ Dis ∪ Den. If T = (T,≤) is a linear order from Dis or Den and the
semantics is reflexive, then we divide int(T) into zones of the form

— ζσ,σ′ = {⟨x, x′⟩ ∈ int(T) | x ∈ σ, x′ ∈ σ′}, where σ,σ′ ∈ secT(a, b) and σ ≼ σ′.

For a < b (or a = b), there are at most 15 (respectively, at most 6) disjoint non-empty
zones covering int(T); see Fig. 3. These zones form the set Z of worlds in the frame
Z⟨a,b⟩, and for any ζ, ζ′ ∈ Z and any interval relation R, we set ζRζ′ iff there exist
⟨x, y⟩ ∈ ζ and ⟨x′, y′⟩ ∈ ζ′ such that ⟨x, y⟩R⟨x′, y′⟩. Finally, we define a map f : int(T)→ Z
by taking f(⟨x, y⟩) = ζ iff ⟨x, y⟩ ∈ ζ. By definition, f is ‘onto’ and satisfies (p1). Condition
(p2) is checked by direct inspection of Fig. 3, while condition (p3) is an immediate
consequence of the following lemma:

LEMMA 3.3. For any zone ζ and any literal λ in ϕ, if K
⟨i,j⟩
ϕ , ⟨x, y⟩ |= λ for some

⟨x, y⟩ ∈ ζ, then K
⟨i,j⟩
ϕ , ⟨x, y⟩ |= λ for all ⟨x, y⟩ ∈ ζ.

PROOF. It suffices to show that if λ@⟨x, y⟩ ∈ clα+1(Vϕ) for some ⟨x, y⟩ ∈ ζ, then

λ@⟨x′, y′⟩ ∈ clα+1(Vϕ) for all ⟨x′, y′⟩ ∈ ζ, assuming that clα(Vϕ) satisfies this property,
which is the case for α = 0.

Suppose ⟨x, y⟩ ∈ ζ and λ@⟨x, y⟩ ∈ clα+1(Vϕ) is obtained by an application of (cl1) to
[R]λ⟨u, v⟩ ∈ clα(Vϕ) with ⟨u, v⟩R⟨x, y⟩ and ⟨u, v⟩ ∈ ζ′. Take any ⟨x′, y′⟩ ∈ ζ. By (p2), there

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:10 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

ζ[j],[j]

ζ[i],[i]

ζ(i,j)

ζ(j,∞)

ζ(−∞,i)

ζ(−∞,i),[i]

ζ•(i,j)

ζ•(j,∞)

ζ•(−∞,i)

i ̸= j

ζ[i],[j]

ζ(j,∞)

ζ(−∞,i)

ζ(−∞,i),[i]

ζ•(j,∞)

ζ•(−∞,i)

i = j

Fig. 4. Zones in the canonical models over Den(<).

is ⟨u′, v′⟩ ∈ ζ′ such that ⟨u′, v′⟩R⟨x′, y′⟩. By our assumption, [R]λ⟨u′, v′⟩ ∈ clα(Vϕ), and

so an application of (c1) to it gives λ@⟨x′, y′⟩ ∈ clα+1(Vϕ).
Suppose next that ⟨x, y⟩ ∈ ζ and [R]λ@⟨x, y⟩ ∈ clα+1(Vϕ) is obtained by an applica-

tion of (cl2). Then λ⟨u, v⟩ ∈ clα(Vϕ) for all ⟨u, v⟩ with ⟨x, y⟩R⟨u, v⟩. Take any ⟨x′, y′⟩ ∈ ζ.
We show that λ⟨u′, v′⟩ ∈ clα(Vϕ) for every λ⟨u′, v′⟩ with ⟨x′, y′⟩R⟨u′, v′⟩, from which

[R]λ@⟨x′, y′⟩ ∈ clα+1(Vϕ) will follow. Let ⟨u′, v′⟩ ∈ ζ′. By (p1), ζRζ′ and, by (p2),
⟨x, y⟩R⟨u, v⟩ for some ⟨u, v⟩ ∈ ζ′ such that ⟨x, y⟩R⟨u, v⟩. Then λ⟨u, v⟩ ∈ clα(Vϕ) and,
by our assumption, λ⟨u′, v′⟩ ∈ clα(Vϕ).

The case of rule (cl3) is obvious. ❑

Note that Lemma 3.3 does not hold for T(<). Indeed, we may have punctual intervals

⟨y, y⟩ (for y /∈ {a, b}) such that K
⟨a,b⟩
ϕ , ⟨y, y⟩ |= [E]⊥ but K

⟨a,b⟩
ϕ , ⟨x, y⟩ ̸|= [E]⊥ for x < y, with

⟨x, y⟩ from the same zone as ⟨y, y⟩.

Case T(<), for T ∈ Den. If T is a dense linear order and the semantics is irreflexive,
we divide int(T) into zones of three types:

— ζσ,σ′ = {⟨x, x′⟩ ∈ int(T) | x ∈ σ, x′ ∈ σ′}, where σ,σ′ ∈ secT(a, b), σ ≼ σ′ and σ ̸= σ′;
— ζσ = {⟨x, x′⟩ ∈ int(T) | x, x′ ∈ σ, x ̸= x′}, where σ ∈ secT(a, b);
— ζ•σ = {⟨x, x⟩ ∈ int(T) | x ∈ σ}, where σ ∈ secT(a, b).

Now, for a < b (or a = b), we have at most 18 (respectively, at most 8) disjoint non-
empty zones covering int(T); see Fig. 4. It is again easy to see that the map f : int(T)→
Z defined by taking f(⟨x, y⟩) = ζ iff ⟨x, y⟩ ∈ ζ satisfies (p1)–(p3). The fact that T is
dense is required for (p2). For discrete T, condition (p2) does not hold. For example, for
T = (Z,✁), a = 0 and b = 3, we have ζ•(a,b)Ēζ(a,b),(a,b) but for ⟨2, 2⟩ ∈ ζ•(a,b) there is no

⟨x′, y′⟩ ∈ ζ(a,b),(a,b) such that ⟨2, 2⟩Ē⟨x′, y′⟩ as shown in the picture below:

⟨0, 0⟩

⟨1, 1⟩

⟨2, 2⟩

⟨3, 3⟩

Thus, in both cases the constructed function f : int(T)→ Z satisfies conditions (p1)–
(p3), and so, using Theorem 3.2, we obtain:

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:11

THEOREM 3.4. Suppose T ∈ Dis and ✁ is ≤, or T ∈ Den and ✁ ∈ {≤, <}. Then an
HS✷

horn-formula ϕ is ⟨a, b⟩-satisfiable in T(✁) iff ϕ is f(⟨a, b⟩)-satisfiable in Z⟨a,b⟩.

To check whether ϕ is f(⟨a, b⟩)-satisfiable in Z⟨a,b⟩, we take the set

Uϕ = {λ@f(⟨a, b⟩) | λ an initial condition of ϕ} ∪ {⊤@ζ | ζ ∈ Z}

and apply to it the following obvious modifications of rules (cl1)–(cl3):

— if [R]λ@ζ ∈ Uϕ, then we add to Uϕ all λ@ζ′ such that ζRζ′;
— if λ@ζ′ ∈ Uϕ for all ζ′ ∈ Z with ζRζ′ and [R]λ occurs in ϕ, then we add [R]λ@ζ to Uϕ;
— if [U](λ1 ∧ · · · ∧ λk → λ) occurs in ϕ and λi@ζ ∈ Uϕ, 1 ≤ i ≤ k, then add λ@ζ to Uϕ.

It is readily seen that at most |Z| · |ϕ| applications are enough to construct a fixed point
cl∗(Uϕ). Similarly to Theorem 3.2, we then show that ϕ is f(⟨a, b⟩)-satisfiable in Z⟨a,b⟩

iff cl∗(Uϕ) does not contain ⊥@f(⟨a, b⟩).

THEOREM 3.5. Suppose Dis′ ⊆ Dis and Den′ ⊆ Den are non-empty. Then Dis′(≤)-,
Den′(≤)- and Den′(<)-satisfiabily of HS✷

horn-formulas are all P-complete.

PROOF. Observe first that, for each of Dis′(≤), Den′(≤), Den′(<), there are at most 8
pairwise non-isomorphic frames of the form Z⟨a,b⟩. As we saw above, checking whether
ϕ is satisfiable in one of them can be done in polynomial time. It remains to apply The-
orem 3.4. The matching lower bound holds already for propositional Horn formulas;
see, e.g., [Dantsin et al. 2001, Theorem 4.2] and references therein. ❑

It is readily seen that, in fact, Theorem 3.5 also holds for Lin′(≤), where Lin′ is any
non-empty subclass of Lin.

3.1. Ontology-based access to temporal data with extensions of HS
✷

horn

We now briefly discuss how extensions of HS✷

horn can be used to facilitate access to
temporal data; more details and experiments can be found in [Kontchakov et al. 2016].

Querying historical data. Suppose that a non-IT expert user would like to query the
historical data provided by the STOLE6 ontology that extracts facts about the Italian
Public Administration from journal articles [Adorni et al. 2015]. The STOLE dataset,
D, contains facts about institutions, legal systems, events, and people such as:

LegalSystem(regno di sardegna)@[1720, 1861],

Institution(consiglio di intendenza)@[1806, 1865].

The former one, for example, states that Regno di Sardegna was a legal system in the
period between 1720 and 1861. Suppose now that the user is searching for institutions
founded during the Regno di Sardegna period. To simplify the user’s task, we can
create an ontology, O, with the single clause

[U]∀x
(

Institution(x) ∧ ⟨B⟩⟨D̄⟩LegalSystem(regno di sardegna)→ RdSInstitution(x)
)

.

The user’s query can now be very simple: q(x, t, s) = RdSInstitution(x)@[t, s]. However,
the query-answering system has to find certain answers to the ontology-mediated query
(O, q(x, t, s)) over D, which are triples (a,m, n) such that RdSInstitution(a)@[m,n]
holds in all models of O and D. As shown by Kontchakov et al. [2016], this ontology-
mediated query can be ‘rewritten’ into a standard datalog query (Π, G(x, t, s)), where
Π is a datalog program Π and G(x, t, s) a goal, such that the certain answers to
(O, q(x, t, s)) over D coincide with the answers to (Π, G(x, t, s)) over D.

6For STOria LEgislativa della pubblica amministrazione italiana.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:12 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

The ontology language in this case is a straightforward datalog extension of HS✷

horn.
However, to represent temporal data, we require more complex initial conditions com-
pared to HS✷

horn, namely, facts of the form P (a1, . . . , al)@[n,m], where ⟨n,m⟩ is an inter-
val. The zonal representation of canonical models above can be extended to this case,
but the number of zones will be quadratic in the number of the initial conditions.

We next show an application that requires a multi-dimensional version of HS✷

horn.

Querying sensor data. Consider a turbine monitoring system that is receiving from
sensors a stream of data of the form Blade(id)@[ι1, ι2], where id is a turbine blade ID
and ι2 is the temperature range over (R, <) observed during the time interval ι1 over
(Z,≤). Suppose also that the user wants to find the blades and time intervals where
the temperature was rising. Thinking of a pair ι = (ι1, ι2) as a rectangle in the two-
dimensional space (Z,≤) × (R, <) and using the operators ⟨R⟩ℓ in dimension ℓ ∈ {1, 2}
coordinate-wise (that is, ιRℓι

′ iff ιℓRι′ℓ and ιi = ι′i, for i ̸= ℓ), we can define rectangles
with rising temperature by the clause

[U]∀x
(

⟨Ā⟩1⟨Ō⟩2BladeTemp(x) ∧ ⟨A⟩1⟨O⟩2BladeTemp(x)→ TempRise(x)
)

,

saying that the temperature of a blade x is rising over a rectangle (ι1, ι2) if
BladeTemp(x)@[ι−1 , ι

−

2] and BladeTemp(x)@[ι+1 , ι
+

2] hold at some rectangles (ι−1 , ι
−

2) and
(ι+1 , ι

+

2) located as shown in Fig. 5.

(Z,≤)

(R, <)

ι−1
ι−2

BladeTemp(x)
ι1

ι2

TempRise(x) ι+1
ι+2

BladeTemp(x)

Fig. 5. Rectangles with rising temperature.

Note that relation algebras over (hyper)rectangles are well-known in temporal and
spatial knowledge representation: the rectangle/block algebra RA [Balbiani et al. 2002]
that extends Allen’s interval algebra; see also [Navarrete et al. 2013; Cohn et al. 2014;
Zhang and Renz 2014] and references therein.

This multi-dimensional HS✷

horn is capable of expressing rules such as ‘if A holds at ι
and A′ at ι′, then B holds at the intersection κ of ι and ι′ (or at the smallest rectangle
κ covering ι and ι′)’ as shown in Fig. 6.

ι

A

ι′

A′
κ

B
ι

A

ι′

A′

κ

B

Fig. 6. Expressing simple rules in multi-dimensional HS✷

horn.

Answering ontology-mediated queries with ontologies in the datalog extension of
multi-dimensional HS✷

horn is P-complete for data complexity and can also be done via
rewriting into standard datalog queries over the data. The reasonable scalability of

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:13

this approach was shown experimentally in [Kontchakov et al. 2016] for both one- and
two-dimensional cases using standard off-the-shelf datalog tools.

4. LOWER BOUNDS

In this section, we show that tractability results such as Theorem 3.5 are not possible
when some kind of ‘controlled infinity’ becomes expressible in the formalism. When
simulating complex problems in HS-models, we always begin by singling out those
intervals—call them units—that are used in the simulation. It should be clear that if
an HS-fragment is capable of

(i) forcing an ω-type infinite (or unbounded finite) sequence of units, and
(ii) passing polynomial-size information from one unit to the next,

then it is PSPACE-hard (because polynomial space bounded Turing machine computa-
tions can be encoded). It is readily seen that HShorn can easily do both (i) and (ii). We
show that, in certain situations, Horn clauses can be encoded by means of core clauses,
which gives (i) and (ii) already in the core fragments. In particular, this is the case:

— for HScore over any class of unbounded timelines under arbitrary semantics (Theo-
rem 4.1), and even

— for HS✷

core over any class of unbounded discrete timelines under the irreflexive se-
mantics (Theorem 4.2).

Further, if a fragment is expressive enough to

(iii) force an ω × ω-like grid-structure of units, and
(iv) pass (polynomial-size) information from each unit representing some grid-point to

the unit representing its right- and up-neighbours in the grid,

then it becomes possible to encode undecidable problems such as ω × ω-tilings, Tur-
ing or counter machine computations. We show this to be the case for the following
fragments:

— HS✸

horn over any class of unbounded timelines under arbitrary semantics (Theo-
rem 4.3),

— HScore over any class of unbounded timelines under the irreflexive semantics (The-
orem 4.4), and

— HS✷

horn over any class of unbounded discrete timelines under the irreflexive seman-
tics (Theorem 4.5).

Although HS-models are always grid-like by definition, it is not straightforward
to achieve (iii)–(iv) in them. Even if we consider the irreflexive semantics and dis-
crete underlying linear orders, HS does not provide us with horizontal and vertical
next-time operators. The undecidability proofs for (Boolean) HS-satisfiability given by
Halpern and Shoham [1991] and Marx and Reynolds [1999] (for irreflexive semantics),
by Reynolds and Zakharyaschev [2001] and Gabbay et al. [2003] (for arbitrary seman-
tics), and by Bresolin et al. [2008] (for the BE, B̄E and B̄Ē fragments with irreflexive
semantics) all employ the following solution to this problem:

(v) Instead of using a grid-like subset of an HS-model as units representing grid-
locations, we use some Cantor-style enumeration of either the whole ω × ω-grid or
its north-western octant nwω×ω (see Fig. 7), and then force a unique infinite (or un-
bounded finite) sequence of units representing this enumeration (or an unbounded
finite prefix of it).

(vi) Then we use some ‘up- and right-pointers’ in the model to access the unit repre-
senting the grid-location immediately above and to the right of the current one.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:14 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

"

" "

" " "

" " " "

" " " " "

❅
❅
❅

❍❍❍❍❍❍

#########

. . .

0

1 2

3 4

5

6 7

8 9

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)
(1, 4) (2, 4) (3, 4)

wall
↓

diagonal
↙

line1 →

line2 →

line3 →

line4 →

Fig. 7. An enumeration of the nwω×ω-grid.

Here, we follow a similar approach. The proofs of Theorems 4.3–4.5 differ in how (v)
and (vi) are achieved by the capabilities of the different formalisms.

— In the proof of Theorem 4.3, the encoding of the ω × ω-grid resem-
bles that of [Marx and Reynolds 1999; Reynolds and Zakharyaschev 2001;
Gabbay et al. 2003] for modal products of linear orders, and [Gabelaia et al. 2005b]
for modal products of various transitive (not necessarily linear) relations, regard-
less whether the relations are irreflexive or reflexive. In particular, in the reflexive
semantics the uniqueness constraints in (v) are usually not satisfiable, so instead it
is forced that all points encoding the same unit behave in the same way. It turns out
that, with some additional ‘tricks’, this technique is applicable to HS✸

horn-formulas.
— It is not clear whether the above method can be applied to the case of HScore. In

the proof of Theorem 4.4, we achieve (for the irreflexive semantics) (v) and (vi) in a
different way, similar to that of [Halpern and Shoham 1991].

— Both techniques above make an essential use of ⟨R⟩-operators. In order to achieve
(v) and (vi) using HS✷

horn-formulas with the irreflexive semantics and discrete linear
orders, in the proof of Theorem 4.5 we provide a completely different encoding the
nwω×ω-grid.

4.1. Turing machines

We begin by fixing the notation and terminology regarding Turing machines. A
single-tape right-infinite deterministic Turing Machine (TM, for short) is a tuple
A = (Q,Σ, q0, qf , δA), where Q is a finite set of states containing, in particular, the
initial state q0 and the halt state qf , Σ is the tape alphabet (with a distinguished blank
symbol 6 ∈ Σ), and δA is the transition function, where we use the symbol £ /∈ Σ to
mark the leftmost cell of the tape:

δA : (Q − {qf})× (Σ ∪ {£})→ Q × (Σ ∪ {l, r}).

The transition function transforms each pair of the form (q, s) into one of the following
pairs:

— (q′, s′) (write s′ and change the state to q′);
— (q′, l) (move one cell left and change the state to q′);
— (q′, r) (move one cell right and change the state to q′),

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:15

where l and r are fresh symbols. We assume that if s = £ (i.e., the leftmost cell of
the tape is active) then δA(q, s) = (q′, r) (that is, having reached the leftmost cell, the
machine always moves to the right). We set size(A) = |Q∪Σ∪ δA|. Configurations of A
are infinite sequences of the form

C = (s0, s1, . . . , si, . . . , sn,6, . . .),

where either s0 = £ and all s1, . . . , sn save one, say si, are in Σ, while si belongs to Q×Σ
and represents the active cell and the current state, or s0 = (q,£) for some q ∈ Q (s0 is
the active cell), and all s1, . . . , sn are in Σ. In both cases, all cells of the tape located to
the right of sn contain 6. We assume that the machine always starts with the empty
tape (all cells of which are blank), and so the initial configuration is represented by
the sequence

C0 =
(

(q0,£),6,6, . . .
)

.

We denote by (Cn | n < H) the unique sequence of subsequent configurations of A
starting with the empty tape —the unique computation of A with empty input—where

H =

{

n+ 1, n is the smallest number with (qf , s) occurring in Cn for some s,
ω, otherwise.

If H < ω, we say that A halts with empty input, and call CH−1 the halting configuration
of A. If H = ω, we say that A diverges with empty input. We denote by Cn(m) the mth
symbol in Cn.

In our lower bound proofs, we use the following Turing machine prob-
lems [Moret 1998]:

HALTING: (Σ0
1-hard)

Given a Turing machine A, does it halt with empty input?

NON-HALTING: (Π0
1-hard)

Given a Turing machine A, does it diverge with empty input?

PSPACE-BOUND HALTING: (PSPACE-hard)

Given a Turing machine A whose computation with empty input uses at most
poly

(

size(A)
)

tape cells for some polynomial function poly(), does A halt on empty
input?

PSPACE-BOUND NON-HALTING: (PSPACE-hard)

Given a Turing machine A whose computation with empty input uses at most
poly

(

size(A)
)

tape cells for some polynomial function poly(), does A diverge on empty
input?

4.2. PSPACE-hardness of core fragments

As we have already observed, proving PSPACE-hardness in the case of HShorn is rela-
tively easy. In order to do this in the case HScore, we use the following binary implica-
tion trick to capture at least some of the Horn features in HScore. For any literals λ1,
λ2, and λ, we define the formula

[

λ1 ∧ λ2 ⇒H λ
]

as the conjunction of

[U](λ1 → ⟨A⟩λ̃1) ∧ [U](λ2 → ⟨A⟩λ̃2), (4)

[U](λ̃2 → ¬⟨B̄⟩λ̃1), (5)

[U](λ̃1 → λ̃ ∧ [B̄]λ̃) ∧ [U](λ̃2 → [B]λ̃), (6)

[U]([A] λ̃→ λ), (7)

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:16 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

where λ̃1, λ̃2, and λ̃ are fresh variables. The following claim holds for arbitrary seman-
tics:

CLAIM 4.1. Suppose M is an HS-model based on some linear order T and satisfying
[

λ1 ∧ λ2 ⇒H λ
]

. For all y in T, if there exist x1, x2 ≤ y such that M, ⟨x1, y⟩ |= λ1 and
M, ⟨x2, y⟩ |= λ2, then M, ⟨x, y⟩ |= λ for all x ≤ y.

PROOF. Suppose M, ⟨x1, y⟩ |= λ1 and M, ⟨x2, y⟩ |= λ2. Take some x ≤ y. By (4), there

exist z1, z2 ≥ y such that M, ⟨y, z1⟩ |= λ̃1 and M, ⟨y, z2⟩ |= λ̃2. Then z1 ≤ z2 by (5). So

M, ⟨y, z⟩ |= λ̃ for all z ≥ y by (6), and therefore M, ⟨x, y⟩ |= λ by (7). ❑

Soundness: Observe that in order to satisfy
[

λ1 ∧ λ2 ⇒H λ
]

the following are neces-
sary:

— λ is horizontally stable: for every y, we have M, ⟨x, y⟩ |= λ iff M, ⟨x′, y⟩ |= λ for all x′;
— if M, ⟨x′, y⟩ ̸|= λ (and so M, ⟨x, y⟩ ̸|= λ for all x) and M, ⟨x′′, y⟩ |= λ1 for some x′, x′′,

then M, ⟨x, y⟩ ̸|= λ2 should hold for all x.

We use the binary implication trick to prove the following:

THEOREM 4.1. (HScore, arbitrary semantics)
(i) For any class C of linear orders containing an infinite order, C-satisfiability of HScore-
formulas is PSPACE-hard. (ii) Fin-satisfiability of HScore-formulas is PSPACE-hard.

PROOF. (i) We reduce PSPACE-BOUND NON-HALTING to C-satisfiability. Let A be a
Turing machine whose computation on empty input uses < poly

(

size(A)
)

tape cells for

some polynomial function poly(), and let N = poly
(

size(A)
)

. Then we may assume that
each configuration C of A is not infinite but of length N , and A never visits the last cell
of any configuration. Let ΓA = Σ∪{£}∪

(

Q× (Σ∪{£})
)

. For each i < N and z ∈ ΓA, we
introduce two propositional variables: cellzi (to encode that ‘the content of the ith cell is

z’) and its ‘copy’ cell
z

i .
Then we can express the uniqueness of cell-contents by

∧

i<N

∧

z ̸=z′∈ΓA

[U](cellzi → ¬cellz
′

i), (8)

and initialise the computation by

cell
(q0,£)
0 ∧

∧

0<i<N

cell+i . (9)

Now we pass information from one configuration to the next, using the ‘copy’ variables
and the ‘binary implication trick’:

[U]
(

cell
(q,s)
i → ⟨A⟩cell

(q,s)
i

)

, for i < N , (q, s) ∈ (Q − {qf})× (Σ ∪ {£}), (10)
[

cell
(q,s)
i ∧ cellzj ⇒H ⟨A⟩cell

z

j

]

,

for i, j < N , (q, s) ∈ (Q − {qf})× (Σ ∪ {£}), z ∈ Σ ∪ {£}, (11)

[U]
(

cell
(q,s)
i → ¬⟨B⟩cell

z

j

)

. (12)

We can force that all cell
(q,s)
i -intervals are different (meaning none of them is punctual)

by the conjunction of, say,

[U]
(

cell
(q,s)
i → unit

)

, for i < N , (q, s) ∈ Q× (Σ ∪ {£}), (13)

[U](unit→ ¬[D]unit). (14)

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:17

Finally, we can ensure that the information passed in fact encodes the computation
steps of A by the following formulas. For all (q, s) ∈ (Q−{qf})×(Σ∪{£}) and z ∈ Σ∪{£},

— if δA(q, s) = (q′, s′), then take the conjunction of

[U]
(

cell
(q,s)
i → cell

(q′,s′)
i

)

, for i < N, (15)
[

cell
(q,s)
i ∧ ⟨B̄⟩cell

z

j ⇒H cellzj
]

, for i, j < N , j ̸= i; (16)

— if δA(q, s) = (q′, r), then take the conjunction of

[U]
(

cell
(q,s)
i → cellsi

)

, for i < N − 1, (17)
[

cell
(q,s)
i ∧ ⟨B̄⟩cell

z

i+1 ⇒H cell
(q′,z)
i+1

]

, for i < N − 1, (18)
[

cell
(q,s)
i ∧ ⟨B̄⟩cell

z

j ⇒H cellzj
]

, for i < N − 1, j < N , j ̸= i, i+ 1; (19)

— if δA(q, s) = (q′, l), then take the conjunction of (17) for 0 < i < N and

[

cell
(q,s)
i ∧ ⟨B̄⟩cell

z

i−1 ⇒H cell
(q′,z)
i−1

]

, for 0 < i < N, (20)
[

cell
(q,s)
i ∧ ⟨B̄⟩cell

z

j ⇒H cellzj
]

, for 0 < i < N , j < N , j ̸= i, i− 1. (21)

Finally, we force non-halting with

[U]
(

cell
(qf ,s)
i → ⊥

)

, for i < N , s ∈ Σ ∪ {£}. (22)

CLAIM 4.2. Let ΦA be the conjunction of (8)–(22). If ΦA is satisfiable in an HS-model,
then A diverges with empty input.

PROOF. Take any HS-model M based on a linear order T. Suppose M, ⟨r, r′⟩ |= ΦA.
Then it is not hard to show by induction on n that there exists an infinite sequence
u0 ≤ u1 < u2 < · · · < un < . . . of points in T such that u0 = r, u1 = r′, and for all n < ω,
the interval ⟨un, un+1⟩ ‘represents’ the nth configuration Cn in the infinite computation
of A with empty input in the following sense:

M, ⟨un, un+1⟩ |= cellzi iff Cn(i) = z,

for all i < N and z ∈ ΓA. ❑

On the other hand, if A diverges on empty input, then take some linear order T
containing an infinite ascending chain t0 < t1 < . . . and define an HS-model M =
(FT, ν) by taking, for all i < N and z ∈ ΓA,

ν(unit) = {⟨t2n, t2n+2⟩ | n < ω},

ν(cellzi) = {⟨x, t2n+2⟩ | Cn(i) = z, n < ω, x ≤ t2n+2},

ν(cell
z

i) =

{

{⟨t2n+2, t2n+3⟩ | Cn(i) = z, n < ω}, if z ∈ Σ ∪ {£},

{⟨t2n+2, t2n+4⟩ | Cn(i) = z, n < ω}, if z ∈ Q× (Σ ∪ {£}).

It is easy to check that M, ⟨t0, t2⟩ |= ΦA with arbitrary semantics. The case when T con-
tains an infinite descending chain requires ‘symmetrical versions’ of the used formulas
and it is left to the reader.

(ii) In the finite case, we reduce PSPACE-BOUND HALTING to Fin-satisfiability. To
achieve this, we just omit the conjunct (22) from ΦA. Now, (10) together with the finite-
ness of the models force the computation to reach the halting state. ❑

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:18 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

THEOREM 4.2. (HS✷

core, discrete orders, irreflexive semantics)
(i) For any class Dis∞ of discrete linear orders containing an infinite order, Dis∞(<)-
satisfiability of HS✷

core-formulas is PSPACE-hard. (ii) Fin(<)-satisfiability of HS✷

core-
formulas is PSPACE-hard.

PROOF. (i) We again reduce PSPACE-BOUND NON-HALTING to the satisfiability
problem. Take any HS-model M based on a discrete linear order T, and consider the
irreflexive semantics of the interval relations. In this case, there is no need to ‘gener-
ate’ an infinite sequence of unit-intervals (which we cannot do without positive ⟨R⟩s),
as we obtain such ‘out of the box’ with the conjunction of the following formulas:

[U](unit→ [E]⊥) ∧ [U]([E]⊥ → unit), (23)

[U](unit→ ¬[A] unit). (24)

It should be clear that if M |=(23)∧ (24), then there is an infinite sequence u0 < u1 <
· · · < un < . . . of subsequent points in T such that for all x, x′ with x ≤ un, x′ ≤ um for
some n,m < ω, we have M, ⟨x, x′⟩ |= unit iff x = x′ = ui for some i < ω.

Further, it is easy to pass information from one unit-interval to the next, as we have
a ‘next-time operator w.r.t.’ the above unit-sequence. Namely,

[U]([B]λ→ [E]λ′)

forces λ′ to be true at a unit-interval, whenever λ is true at the previous one.
To replace the binary implication trick with one using only HS✷

core-formulas, we use
the following binary implication trick for the diagonal. For any literals λ1, λ2 and λ,
we define the formula

[

λ1 ∧ λ2 ⇒d
H λ

]

as the conjunction of

[U]([B]λ1 → [E] [B̄]λ̃),

[U]([B]λ2 → [E] λ̃),

[U]([A] λ̃→ λ),

where λ̃ is a fresh variable. Then we clearly have the following:

CLAIM 4.3. Suppose M satisfies
[

λ1 ∧ λ2 ⇒d
H λ

]

. If M, ⟨un, un⟩ |= λ1 ∧ λ2 then
M, ⟨x, un+1⟩ |= λ for all x ≤ un+1.

Soundness: Observe again that to satisfy
[

λ1 ∧ λ2 ⇒d
H λ

]

it is necessary that λ is
horizontally stable in the model, and λ1, λ2 also satisfy certain conditions.

Now suppose that A is a Turing machine whose computation with empty input uses
< poly

(

size(A)
)

tape cells for some polynomial function poly(), and let Φd
A be the con-

junction of (8), (9), (22), (23), (24), and the following formulas:

[U]
(

cell
(q,s)
i → unit

)

, for i < N , (q, s) ∈ Q× (Σ ∪ {£}),

and for all (q, s) ∈ (Q− {qf})× (Σ ∪ {£}) and z ∈ Σ ∪ {£},

— if δA(q, s) = (q′, s′), then take the conjunction of

[U]
(

[B]cell(q,s)i → [E] cell(q
′,s′)

i

)

, for i < N,
[

cell
(q,s)
i ∧ cellzj ⇒

d
H cellzj

]

, for i, j < N , j ̸= i;

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:19

— if δA(q, s) = (q′, r), then take the conjunction of

[U]
(

[B]cell(q,s)i → [E] cellsi
)

, for i < N − 1, (25)
[

cell
(q,s)
i ∧ cellzi+1 ⇒

d
H cell

(q′,z)
i+1

]

, for i < N − 1,
[

cell
(q,s)
i ∧ cellzj ⇒

d
H cellzj

]

, for i < N − 1, j < N , j ̸= i, i+ 1;

— if δA(q, s) = (q′, l), then take the conjunction of (25) for 0 < i < N and

[

cell
(q,s)
i ∧ cellzi−1 ⇒

d
H cell

(q′,z)
i−1

]

, for 0 < i < N,
[

cell
(q,s)
i ∧ cellzj ⇒

d
H cellzj

]

, for 0 < i < N , j < N , j ̸= i, i− 1.

We then clearly have the following:

CLAIM 4.4. If Φd
A is satisfiable in an HS-model based on a discrete linear order, then

A diverges with empty input.

On the other hand, it is straightforward to see that if A diverges with empty in-
put, then Φd

A is satisfiable (using the irreflexive semantics) in any HS-model that is
based on a discrete linear order T containing an infinite ascending chain of subse-
quent points. The case when T contains an infinite descending chain of immediate
predecessor points requires ‘symmetrical versions’ of the used formulas and is left to
the reader.

(ii) We reduce PSPACE-BOUND HALTING to Fin(<)-satisfiability. To achieve this, we
omit the conjunct (22) from Φd

A above, and replace (24) with

[U]
(

cell
(q,s)
i → ¬[A] unit

)

, for i < N , (q, s) ∈ (Q − {qf})× (Σ ∪ {£}),

in order to force the computation to reach the halting state. ❑

4.3. Undecidability

In our undecidability proofs, we ‘represent’ Turing machine computations on the
nwω×ω-grid as follows. Given any Turing machine A, observe that for any computa-
tion of A in the nth step the head can never move further than the nth cell. If A starts
with empty input, this means that Cn(m) = 6 for all n < H and n < m < ω. Because of
this we may actually assume that Cn is not of infinite length but of finite length n+ 2.
(Thus, C0 =

(

(q0,£),6
)

and A never visits the last cell of any Cn, so it is always 6.)
So we can place the subsequent finite configurations of the computation on the sub-
sequent horizontal lines of the nwω×ω-grid, continuously one after another (until we
reach CH−2, if H < ω), as depicted in Fig. 8.

Observe also that only the active cell and its neighbours can be changed by the
transition to the next configuration, while all other cells remain the same. So instead
of using the transition function δA, we can have the same information in the form of a
‘triples to cells’ function τA defined as follows. Let ΓA = Σ ∪ {£}∪

(

Q× (Σ ∪ {£})
)

and
let WA ⊆ ΓA × ΓA × ΓA consist of those triples that can occur as three subsequent cells
in the continuous enumeration of the configurations of the computation, that is, let

WA =
(

(Q− × Σ)× Σ× Σ
)

∪
(

Σ× (Q− × Σ)× Σ
)

∪
(

Σ× Σ× (Q− × Σ)
)

∪
(

LEnd× Σ× Σ
)

∪
(

{6}× LEnd× Σ
)

∪
(

Σ× {6}× LEnd
)

∪
{(

⟨q0,£⟩,6,£
)}

,

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:20 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

"

" "

" " "

" " " "

" " " " "

❅
❅
❅

❍❍❍❍❍❍

#########

. . .

C0 on line1 →

C1 on line2 →

C2 on line3 →

C3 on line4 →

Fig. 8. Placing the computation of A on the nwω×ω-grid.

where Q− = Q−{qf} and LEnd = {£}∪
(

Q−×{£}
)

. We define a function τA : WA → ΓA
by taking, for all (x, y, z) ∈ WA,

τA(x, y, z) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(q′, y), if either x ∈ (Q− {qf})× (Σ ∪ {£}) and δA(x) = (q′, r),
or z ∈ (Q− {qf})× Σ and δA(z) = (q′, l),

(q′, y′), if y ∈ (Q− {qf})× Σ and δA(y) = (q′, y′),
y′ if y = (q, y′) and δA(y) = (q′,M) for M = l, r,
y, otherwise.

(26)

Then it is easy to see that τA indeed determines the computation of A, that is, for all
0 < n < H , Cn(n+ 1) = 6 and for all m ≤ n,

Cn(m) =

⎧

⎪

⎨

⎪

⎩

τA
(

6, Cn−1(0), Cn−1(1)
)

, if m = 0,

τA
(

Cn−1(m− 1), Cn−1(m), Cn−1(m+ 1)
)

, if 0 < m < n,

τA
(

Cn−1(n− 1),6, Cn(0)
)

, if m = n.

THEOREM 4.3. (HS✸

horn, arbitrary semantics)
(i) For any class C of linear orders containing an infinite order, C-satisfiability of HS✸

horn-
formulas is undecidable. (ii) Fin-satisfiability of HS✸

horn-formulas is undecidable.

PROOF. (i) We reduce NON-HALTING to C-satisfiability. We discuss only the case
when C contains some linear order T having an infinite ascending chain. (The case
when T contains an infinite descending chain requires ‘symmetrical versions’ of the
used formulas and it is left to the reader.)

To make the main ideas more transparent, first we assume the irreflexive semantics
for the interval relations, and then we show how to modify the proof for arbitrary
semantics. Take any HS-model M based on some linear order T. We begin with forcing
a unique infinite unit-sequence in M, using the conjunction of (14) and

unit ∧ [U](unit→ ⟨A⟩unit), (27)

[U](unit→ ¬⟨E⟩unit ∧ ¬⟨B̄⟩unit ∧ ¬⟨D⟩unit ∧ ¬⟨O⟩unit). (28)

Then it is straightforward to show the following:

CLAIM 4.5. Let φenum be the conjunction of (14), (27) and (28), and suppose that
M, ⟨r, r′⟩ |= φenum. Then there is an infinite sequence u0 < u1 < . . . < un < . . . of points
in T such that for all r ≤ x and all r′ ≤ x′, we have M, ⟨x, x′⟩ |= unit iff x = un and
x′ = un+1 for some n < ω.

Next, we use this unit-sequence to encode the enumeration of the nwω×ω-grid de-
picted in Fig. 7. Observe that for this particular enumeration the right-neighbour of

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:21

a grid-location is the next one in the enumeration. As we generated our unit-sequence
with (27), we have access from one unit-interval to the next by the A interval relation.
So, to encode the nwω×ω-grid, it is enough to use ‘up-pointers’. We force the proper
placement of ‘up-pointers’ in a particular way, by using the following properties of this
enumeration:

(a.1) 0 is on the diagonal, and up neighbour of(0) = 1.
(a.2) If n is on the diagonal, then up neighbour of(n) + 1 is on the diagonal, for every

n < B.
(a.3) If n is the up-neighbour of some location, then n is not on the diagonal, for every

n < B.
(a.4) If n is not on the diagonal, then up neighbour of(n + 1) = up neighbour of(n) + 1,

for every n+ 1 < B.
(a.5) If n is on the diagonal, then up neighbour of(n + 1) = up neighbour of(n) + 2, for

every n+ 1 < B.

CLAIM 4.6. Properties (a.1)–(a.5) uniquely determine7 the enumeration in Fig. 7.

PROOF. We prove by induction on n < B that for every k ≤ n,

(i) k = ⟨x, y) is like it should be in Fig. 7.
(ii) k is on the diagonal iff k = (x, x) for some x.

Indeed, for n = 1 (i) follows from (a.1), and (b) follows from (a.3). Now suppose induc-
tively that (i)–(ii) hold for all k ≤ n for some 0 < n < B, and let n + 1 < B. There are
three cases.

If n is on the diagonal, then by (ii), n = (x, x) for some x > 0. Let m = (x− 1, x− 1).
Then m < n by (i) and so by (ii), m is on the diagonal. So by (a.5), n + 1 =
up neighbour of(m+ 1), proving (i). Now (ii) follows from (a.3).

If n is not on the diagonal and n = (x, y) for some y and x < y − 1, then let m =
(x, y − 1). Then m < n by (i) and so by (ii), m is not on the diagonal. So by (a.4),
n+ 1 = up neighbour of(m+ 1), proving (i). Now (ii) follows from (a.3).

If n is not on the diagonal and n = (y − 1, y) for some y, then let m = (y − 1, y − 1).
Then m < n by (i) and so by (ii), m is on the diagonal. By (a.2), n+1 is on the diagonal,
so it should be the next ‘unused’ diagonal location, which is (y, y), proving both (i) and
(ii). ❑

Next, given a unique infinite unit-sequence U =
(

⟨un, un+1⟩ | n < ω
)

as in Claim 4.5
above, we express ‘horizontal’ and ‘vertical next-time’ in M ‘with respect to U ’. Given
literals λ1 and λ2, let grid succ→[λ1,λ2] denote the conjunction of

[U](λ1 → ¬⟨E⟩λ1) ∧ [U](λ2 → ¬⟨E⟩λ2), (29)

[U](λ1 → ⟨E⟩λ2),

[U]
(

λ1 → [E] (⟨E⟩λ2 → ¬⟨B⟩unit)
)

,

and similarly, let grid succ↑[λ1,λ2] denote the conjunction of

[U](λ1 → ¬⟨B̄⟩λ1) ∧ [U](λ2 → ¬⟨B̄⟩λ2), (30)

[U](λ1 → ⟨B̄⟩λ2),

[U]
(

λ1 → [B̄](⟨B̄⟩λ2 → ¬⟨E⟩unit)
)

.

It is straightforward to show the following:

7among those that contain the enumeration of the diagonal locations as (0, 0), . . . , (1, 1), . . . , (2, 2), . . .

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:22 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

CLAIM 4.7. Suppose M, ⟨um, un⟩ |= λ1 for some m,n < ω.

— Suppose M satisfies grid succ→[λ1,λ2]. Then, for all x, M, ⟨x, un⟩ |= λ2 iff x = um+1,
and M, ⟨x, un⟩ |= λ1 iff x = um.

— Suppose M satisfies grid succ↑[λ1,λ2]. Then, for all y, M, ⟨um, y⟩ |= λ2 iff y = un+1,
and M, ⟨um, y⟩ |= λ1 iff y = un.

Now we can encode (a.1)–(a.5) as follows. We use a propositional variable up to mark
up-pointers, variables diag and diag to mark those respective unit-points that are on
the diagonal and not on the diagonal, and further fresh variables now, up↑, up→, up+

(see Fig. 9 for the intended placement of the variables). Then we express (a.1) by the

❞

❞

❞

❞

❞

❞

❞

❞

❞

#= unit ∧ diag

❞= unit ∧ diag

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##

"

#

#

#

#

now

up

"

"

up

up

"

"

"

up

up

up

"

"

"

up

up

up
♣ ♣
♣

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

♣ ♣ ♣ ♣ ♣ ♣
♣♣
♣

♣♣
♣

"

" "

"

up

up↑

up+

up→

un un+1

um

um+1

um+2

Fig. 9. Encoding the nwω×ω-grid in an HS-model: version 1.

conjunction of

unit ∧ diag ∧ now, (31)

grid succ↑[now, up], (32)

(a.2) by the conjunction of

grid succ↑[up, up↑], (33)

[U]
(

unit ∧ diag→ [B̄]
(

up↑ → [E] (unit→ diag)
)

)

, (34)

(a.3) by the conjunction of

[U]
(

up→ [E] (unit→ diag)
)

, (35)

[U](diag ∧ diag→ ⊥), (36)

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:23

(a.4) by

[U]
(

unit ∧ diag→ [B̄]
(

up↑ → [E] (up→ → up)
)

)

, (37)

and (a.5) by the conjunction of

grid succ→[up↑, up→], (38)

grid succ↑[up→, up+], (39)

[U]
[

unit ∧ diag→ [B̄]
(

up↑ → [E]
(

up→ → [B̄](up+ → up)
)

)]

. (40)

It is not hard to show the following:

CLAIM 4.8. Suppose M, ⟨r, r′⟩ |= φenum∧φgrid, where φgrid is the conjunction of (31)–

(40). Then now, diag, diag and up are properly placed (see Fig. 9).

Given a Turing machine A, we will use the function τA (defined in (26)) to force a
diverging computation of A with empty input as follows. We introduce (with a slight
abuse of notation) a propositional variable x for each x ∈ ΓA. Then we formulate gen-
eral constraints as

[U](x→ unit), for x ∈ ΓA, (41)

[U](x→ ¬y), for x ̸= y, x, y ∈ ΓA, (42)

and then force the computation steps by the conjunction of

⟨A⟩(q0,£), (43)

[U](diag→ 6), (44)

[U]
(

y ∧ ⟨A⟩z ∧ ⟨Ā⟩x→ [B̄]
(

up→ [E] (unit→ τA(x, y, z))
)

)

, for (x, y, z) ∈WA. (45)

Finally, we force non-halting with

[U]
(

(qf , s)→ ⊥
)

, for s ∈ Σ ∪ {£}. (46)

Using Claims 4.5–4.8, now it is straightforward to prove the following:

CLAIM 4.9. Let ΨA be the conjunction of φenum, φgrid and (41)–(46). If ΨA is satisfi-
able in an HS-model, then A diverges with empty input.

On the other hand, Fig. 9 shows how to satisfy φenum ∧ φgrid (using the irreflexive
semantics) in an HS-model that is based on some linear order T having an infinite
ascending chain u0 < u1 < If A diverges with empty input, then we can add, for all
x ∈ ΓA,

ν(x) = {⟨un−1, un⟩ | n > 0, Cj(i) = x

and the nth point in the grid-enumeration is (i, j + 1)} (47)

to obtain an HS-model M = (FT, ν) satisfying (41)–(46) as well.

Next, we show how to modify the formula ΨA above in order to be satisfiable with
arbitrary semantics of the interval relations. ‘Uniqueness forcing’ constraints like (28),
(29), and (30) above are clearly not satisfiable with the reflexive semantics. Expanding
on an idea of [Spaan 1993], [Reynolds and Zakharyaschev 2001; Gabbay et al. 2003;
Gabelaia et al. 2005b], we use the following chessboard trick to solve this problem and

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:24 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

kind of ‘discretise’ the HS-model. Take two fresh propositional variables Htick and
Vtick, and make the HS-model M ‘chessboard-like’ by the formula

[U](Htick→ [B̄]Htick) ∧ [U](Vtick→ [E]Vtick). (48)

However, to make it a real chessboard, we also need to have ‘cover’ by these variables
and their negations, that is, for every interval in M, Htick ∨ ¬Htick and Vtick ∨ ¬Vtick
should hold. In order to express these by HS✸

horn-formulas, we use the following cover

trick of [Artale et al. 2007, p. 11]. For any literals λ and λ, let Cover↔[λ,λ] denote the
conjunction of

[U]
(

⊤ → ⟨B̄⟩(Mλ ∧ ⟨E⟩Xλ ∧ ⟨E⟩Yλ)
)

, (49)

[U]
(

Xλ ∧ Yλ → ⊥
)

,

[U]
(

⟨B̄⟩
(

Mλ ∧ ⟨E⟩(Yλ ∧ ⟨E⟩Xλ)
)

→ λ
)

,

[U]
(

⟨B̄⟩
(

Mλ ∧ ⟨E⟩(Xλ ∧ ⟨E⟩Yλ)
)

→ λ
)

,

[U]
(

λ ∧ λ→ ⊥
)

,

where Mλ, Xλ, and Yλ are fresh variables.
Soundness: Observe that Cover↔[λ,λ] forces the model to be infinite. Also, it always

implies that both λ and λ are vertically stable, that is,

[U]
(

λ→ [B̄]λ
)

∧ [U]
(

λ→ [B̄]λ
)

.

holds. We can define Cover↕[λ,λ] similarly, for horizontally stable λ and λ. Now we take

fresh variables Htick and Vtick, and define Chessboard by taking

Chessboard := Cover↔[Htick,Htick] ∧ Cover↕[Vtick,Vtick]. (50)

Then (48) and the similar formula for Htick and Vtick follow. Suppose that M is an HS-
model based on some linear order T = (T,≤) satisfying Chessboard. We define two new
binary relations ≺M

→ and ≺M
↑ on T by taking, for all u, v ∈ T ,

u ≺M
→ v iff ∃z

(

u ≤ z ≤ v and

∀y
(

if ⟨z, y⟩ is in M, then
(

M, ⟨u, y⟩ |= Htick ↔ M, ⟨z, y⟩ |= ¬Htick)
)

)

;

u ≺M
↑ v iff ∃z

(

u ≤ z ≤ v and

∀x
(

if ⟨x, u⟩ is in M, then
(

M, ⟨x, u⟩ |= Vtick ↔ M, ⟨x, z⟩ |= ¬Vtick)
)

)

.

Then it is straightforward to check that both ≺M
→ and ≺M

↑ imply ≤, and both are tran-
sitive and irreflexive. (They are not necessarily linear orders.) We call a non-empty
subset I ⊆ T a horizontal M-interval (shortly, an h-interval), if I is maximal with the
following two properties:

— for all x, y, z ∈ T , if x ≤ y ≤ z and x, z ∈ I then y ∈ I;
— either M, ⟨x, y⟩ |= Htick, for all x ∈ I and y ∈ T such that ⟨x, y⟩ is in M, or M, ⟨x, y⟩ |=

¬Htick, for all x ∈ I and y ∈ T such that ⟨x, y⟩ is in M.

For any x ∈ T , let h int(x) denote the unique h-interval I with x ∈ I. We define v-
intervals and v int(x) similarly, using ≺M

↑ . A set S of the form S = I × J for some
h-interval I and v-interval J is called a square. For any ⟨x, y⟩ in M, let square(x, y)
denote the unique square S with ⟨x, y⟩ ∈ S.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:25

Now we define horizontal and vertical successor squares. Given propositional vari-
ables P and Q, let succ sq→[P,Q] be the conjunction of

[U]
(

P ∧ Htick→ ⟨E⟩(Q ∧ Htick)
)

, (51)

[U](P ∧ P→ ⊥),

[U](P ∧ Htick→ [E]P′), (52)

[U]
(

P′ ∧ Htick→ (P ∧ [E]P)
)

,

[U](Q ∧Q→ ⊥),

[U](Q ∧ Htick→ [E]Q′),

[U]
(

Q′ ∧ Htick→ (Q ∧ [E]Q)
)

,

[U]
(

P′ ∧ Htick ∧ ⟨E⟩(Q ∧ Htick)→ P
)

, (53)

[U](P′ ∧ Htick ∧ ⟨E⟩Q→ Q), (54)

[U](Q ∧ P→ ⊥), (55)

[U](Q ∧ ⟨E⟩P→ ⊥) (56)

plus similar formulas for the ‘P ∧ Htick’ case (here P, Q, P′ and Q′ are fresh variables).
One can define succ sq↑[P,Q] similarly. Finally, we let

fill[P] = succ sq→[Pl,P] ∧ succ sq→[P,Pr] ∧ succ sq↑[Pd,P] ∧ succ sq↑[P,Pu],

where Pl, Pr, Pd, and Pu are fresh variables.

CLAIM 4.10. Suppose M satisfies Chessboard and succ sq→[P,Q]. Then the following
hold, for all x, y, z, w:

(i) If M, ⟨x, y⟩ |= P, then there is v such that x ≺M
→ v and M, ⟨v, y⟩ |= Q.

(ii) If M, ⟨x, y⟩ |= P and x ≺M
→ z, then M, ⟨z, y⟩ ̸|= P.

(iii) If M, ⟨x, y⟩ |= Q and x ≺M
→ z, then M, ⟨z, y⟩ ̸|= Q.

(iv) If M, ⟨x, y⟩ |= P, z ∈ h int(x), x ≤ z, then M, ⟨z, y⟩ |= P.
(v) If M, ⟨x, y⟩ |= P, M, ⟨z, y⟩ |= Q, w ∈ h int(z) and w ≤ z, then M, ⟨w, y⟩ |= Q.
(vi) If M, ⟨x, y⟩ |= P and M, ⟨z, y⟩ |= Q, then x ≺M

→ z and there is no t with x ≺M
→ t ≺M

→ z.

Similar statements hold if M satisfies succ sq↑[P,Q]. Therefore,

(vii) if M satisfies fill[P] and M, ⟨x, y⟩ |= P then M, ⟨x′, y′⟩ |= P for all ⟨x′, y′⟩ ∈
square(x, y).

PROOF. It is mostly straightforward. We show the trickiest case, (vi) We have x ≤ z
by (55). Suppose, say, that M, ⟨x, y⟩ |= Htick. By (i), there is v such that x ≺M

→ v and
M, ⟨v, y⟩ |= Q, and so M, ⟨v, y⟩ |= Htick. Then z ∈ h int(v) follows by (iii), and so x ≺M

→ z.
Now let t be such that x ≤ t ≤ z. If M, ⟨t, y⟩ |= Htick, then M, ⟨t, y⟩ |= P by (52) and (53),
and so t ∈ h int(x) by (ii). If M, ⟨t, y⟩ |= Htick, then M, ⟨t, y⟩ |= Q by (52) and (54), and
so t ∈ h int(z) by (iii). ❑

Soundness: If M satisfies fill[P] then P must be both ‘horizontally and vertically
square-unique’ in the following sense: if M, ⟨x, y⟩ |= P and M, ⟨x′, y′⟩ |= P for some
x ≺M

→ x′ and y ≺M
↑ y′, then square(x, y) = square(x′, y′) must follow.

Now, using this ‘chessboard trick’, we can modify the formula ΨA above for any se-
mantical choice of the interval relations. To begin with, instead of using φenum, we

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:26 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

force a unique infinite sequence of unit-squares by introducing a fresh variable next,
and taking the conjunction φrenum of the following formulas:

Chessboard ∧ fill[unit] ∧ fill[next],

unit ∧ succ sq→[unit, next], (57)

succ sq↑[next, unit].

Then we have the following generalisation of Claim 4.5:

CLAIM 4.11. Suppose M, ⟨r, r′⟩ |= φrenum. Then there exist infinite sequences
(xn | n < ω) and (yn | n < ω) of points in T such that the following hold:

(i) r = x0 ≺M
→ x1 ≺M

→ . . . ≺M
→ an ≺M

→ . . . and r′ = y0 ≺M
↑ y1 ≺M

↑ . . . ≺M
↑ yn ≺M

↑

(ii) There is no x with xn ≺M
→ x ≺M

→ xn+1 and there is no y with yn ≺M
↑ y ≺M

→ yn+1, for
any n < ω.

(iii) For all x, y, M, ⟨x, y⟩ |= unit iff ⟨x, y⟩ ∈ square(xn, yn) for some n < ω.

In order to show the soundness of φrenum, let T = (T,≤) be a linear order containing
an infinite ascending chain u0 < u1 <

CLAIM 4.12. φrenum is satisfiable in an HS-model based on T under arbitrary se-
mantics.

PROOF. For each n < ω, we let

Un = {x ∈ T | un ≤ x < un+1}.

It is straightforward to check that the following HS-model M = (FT, ν) satisfies
Cover↔[Htick,Htick]:

ν(Htick) ={⟨x, y⟩ ∈ int(T) | x ∈ Un, n is even},

ν(Htick) ={⟨x, y⟩ ∈ int(T) | x ∈ Un, n is odd},

ν(MHtick) ={⟨x, y⟩ ∈ int(T) | x ∈ Um, y ∈ Un, both m,n are even, or both m,n are odd},

ν(XHtick) ={⟨x, y⟩ ∈ int(T) | x ∈ Un, y ∈ Un+1 ∪ Un+2, n is even},

ν(YHtick) ={⟨x, y⟩ ∈ int(T) | x ∈ Un, y ∈ Un+1 ∪ Un+2, n is odd}.

Cover↕[Vtick,Vtick] can be satisfied similarly. The rest is obvious. ❑

Next, consider the formula φgrid defined in Claim 4.8. Let φrgrid be obtained

from φgrid by replacing each occurrence of grid succ→ by succ sq→ and each oc-
currence of grid succ↑ by succ sq↑, and adding the conjuncts fill[P] for P ∈

{now, unit, diag, diag, up, up↑, up→, up+}. Using Claim 4.11, it is straightforward to show
that we have the analogue of Claim 4.8 for squares.

Finally, given a Turing machine A, let Ψr
A be the conjunction of of φrenum, φrgrid, (41)–

(46), and fill[x] for each x ∈ ΓA. Then we have:

CLAIM 4.13. If Ψr
A is satisfiable in an HS-model, then A diverges with empty input.

On the other hand, using Fig. 9, Claim 4.12 and (47) it is easy to show how to satisfy
Ψr
A in an HS-model that is based on some linear order T having an infinite ascending

chain u0 < u1 < . . ., regardless which semantics of the interval relations is considered.

(ii) We reduce ‘halting’ to Fin-satisfiability. We show how to modify the formula Ψr
A

above to achieve this. To begin with, ‘generating’ conjuncts like (49) and its ‘vertical’
version in Chessboard, and (51) and its Htick version in succ sq→[unit, next] of (57) are not

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:27

satisfiable in HS-models based on finite orders. In order to obtain a finitely satisfiable
version, we introduce a fresh variable end, replace (46) with the conjunction of

[U](end→ unit), (58)

[U](end ∧ x→ ⊥), for x ∈ Σ ∪ {£} ∪
(

Q− × (Σ ∪ {£})
)

, (59)

then replace conjunct (49) in Cover↔[λ,λ] with the conjunction of

[U]
(

⟨R⟩end→ ⟨B̄⟩(Mλ ∧ ⟨E⟩Xλ ∧ ⟨E⟩Yλ)
)

, for R ∈ {A, B̄, D̄, L,O},

(and similarly in Cover↕[λ,λ]), and then replace conjunct (51) in succ sq→[unit, next] with
the conjunction of

[U]
(

⟨R⟩end ∧ unit ∧ Htick→ ⟨E⟩(next ∧ Htick)
)

, for R ∈ {A, B̄, D̄, L,O}

(and do similarly for the ‘Htick-version’, and for the ‘generating’ conjuncts in
succ sq↑[next, unit]). ❑

THEOREM 4.4. (HScore, irreflexive semantics)
(i) For any class C of linear orders containing an infinite order, C(<)-satisfiability of
HScore-formulas is undecidable. (ii) Fin(<)-satisfiability of HScore-formulas is undecid-
able.

PROOF. (i) We reduce NON-HALTING to C(<)-satisfiability. Given an HS-model M
based on some linear order T, observe that the formula φenum (defined in Claim 4.5)
that forces a unique infinite unit-sequence

(

⟨un, un+1⟩ | n < ω
)

in M is within HScore.
However, the formula φgrid (defined in Claim 4.8) we used in the proof of Theorem 4.3
to encode the nwω×ω-grid in M with the help of properly placed up-pointers contains
several seemingly ‘non-HScore-able’ conjuncts. In order to fix this, below we will force
the proper placement of up-pointers in a different way.

Consider again the enumeration of nwω×ω in Fig. 7. Observe that the enumer-
ated points can be organized in (horizontal) lines: line1 = (1, 2), line2 = (3, 4, 5),
line3 = (6, 7, 8, 9), and so on. Consider the following properties of this enumeration
(different from the ones listed as (a.1)–(a.5) in the proof of Theorem 4.3 above):

(b.1) start of(line1) = 1, and up neighbour of(0) = 1.
(b.2) start of(linei+1) = end of(linei) + 1, for all i > 0.
(b.3) Every line starts with some n on the wall and ends with some m on the diagonal.
(b.4) If n is in linei, then up neighbour of(n) is in linei+1, for all i.
(b.5) For every m,n, if m < n then up neighbour of(m) < up neighbour of(n).
(b.6) For every n > 0 on the wall, there is m with up neighbour of(m) = n.
(b.7) For every n, if n is neither on the wall nor on the diagonal, then there is m with

up neighbour of(m) = n.

Observe that (b.1) and (b.2) imply that every n in the enumeration belongs to linei
for some i. Also, by (b.2) and (b.3), for every i there is a unique m in linei that is on
the diagonal (its last according to the enumeration). As up neighbour of is an injective
function, by (b.4) we have that

number of points in linei ≤ number of points in linei+1.

Further, by (b.4), (b.6) and (b.7),

number of non-diagonal points in linei+1 ≤ number of points in linei.

Therefore,

length of(linei+1) = length of(linei) + 1 for all i.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:28 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

Finally, by (b.4) and (b.5) we obtain that linei is what it should be in Fig. 7, and so we
have:

CLAIM 4.14. Properties (b.1)–(b.7) uniquely determine8 the enumeration in Fig. 7.

Given a unique infinite unit-sequence U =
(

⟨un, un+1⟩ | n < ω
)

in M as in Claim 4.5
above, we now encode (b.1)–(b.7) as follows. In addition to up, diag, and now, we will also
use a variable wall to mark those unit-points that are on the wall, and a variable line to
mark lines in the following sense: M, ⟨x, y⟩ |= line iff x = um, y = un and (m + 1, . . . , n)
is a line (see Fig. 10 for the intended placement of the variables).

✉= unit

#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

"

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

diag
now

up

"

"

up

up

"
line

"

"

"

up

up

up

"line

wall

diag

wall

diag

wall

diag

wall

"line

"

"

"

up

up

up
♣ ♣
♣

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

Fig. 10. Encoding the nwω×ω-grid in an HS-model: version 2.

To begin with, we express that up neighbour of is an injective function by

[U](up→ ¬⟨E⟩up ∧ ¬⟨B̄⟩up), (60)

then we express (b.1) by the conjunction of

now ∧ ⟨A⟩line, (61)

[U](up→ ¬⟨D⟩now), (62)

(b.2) by

[U](line→ ⟨A⟩line), (63)

8among those that contain the enumeration of the diagonal locations as (0, 0), . . . , (1, 1), . . . , (2, 2), . . .

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:29

(b.3) by the conjunction of

[U](wall→ unit), (64)

[U](diag→ unit), (65)

[U](line→ ⟨E⟩diag ∧ ⟨B⟩wall), (66)

(b.4) by the conjunction of

[U](unit→ ⟨B̄⟩up), (67)

[U](up→ ⟨E⟩unit ∧ ⟨B⟩unit), (68)

[U](up→ ¬⟨B̄⟩line ∧ ¬⟨D⟩line), (69)

(b.5) by

[U](up→ ¬⟨D⟩up), (70)

(b.6) by

[U](wall→ ⟨Ē⟩up). (71)

Finally, we can express (b.7) by
[

⟨D̄⟩line ∧ unit⇒H ⟨A⟩⟨Ā⟩up
]

, (72)

using the ‘binary implication trick’ introduced in Section 4.2.
Now it is not hard to show the following:

CLAIM 4.15. Suppose M, ⟨r, r′⟩ |= φenum ∧ φcore
grid, where φcore

grid is a conjunction of (60)–

(72). Then now, wall, diag, line, and up are properly placed (see Fig. 10).

On the other hand, using Fig. 10 it is not hard to see that φcore
grid is satisfiable (using

the irreflexive semantics) in an HS-model that is based on some linear order T having
an infinite ascending chain u0 < u1 < In particular, conjunct (72) is satisfiable
because of the following: ⟨A⟩⟨Ā⟩up is clearly horizontally stable, and it is easy to check
that for every x, n with M, ⟨x, un⟩ |= ¬⟨A⟩⟨Ā⟩up, we have M, ⟨x, un⟩ |= ¬⟨D̄⟩line.

Given a Turing machine A, consider the conjuncts (41)–(46) above, and observe that
the only non-HScore conjuncts among them are (45) for (x, y, z) ∈ WA. In order to replace
these with HScore-formulas we introduce the following fresh propositional variables:

— (y, z) and (y, z), for all y, z ∈ ΓA, and

— (x, y, z) and (x, y, z), for all (x, y, z) ∈WA.

Then we again use the ‘binary implication trick’ of Section 4.2 (and its ‘vertical’ ver-
sion), and take the conjunction of the following formulas, for all y, z ∈ ΓA and all
(x, y, z) ∈ WA:

[

⟨Ā⟩y ∧ z ⇒V (y, z)
]

,

[U]
(

(y, z)→ ⟨Ā⟩(y, z)
)

,

[U]
(

(y, z)→ unit
)

,
[

⟨A⟩(y, z) ∧ x⇒H (x, y, z)
]

,

[U]
(

(x, y, z)→ ⟨A⟩(x, y, z)
)

,

[U]
(

(x, y, z)→ up ∧ ⟨E⟩τA(x, y, z)
)

.

Fig. 11 shows the intended meaning of these formulas, and also how to satisfy them in
the HS-model M defined in (47).

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:30 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

✉

✉

✉

✉%

x

(y, z)
y

z

up
(x, y, z)

↓
(y, z)

←(x, y, z)

τA(x, y, z)

✉= unit

Fig. 11. Encoding formula (45) in HScore.

(ii) We reduce HALTING to Fin(<)-satisfiability. In order to achieve this, we introduce
a fresh variable end, replace (46) with the conjunction of (58) and (59), and replace the
‘generating’ conjunct (27) of φenum with

unit ∧
[

⟨L⟩end ∧ unit⇒H ⟨A⟩unit
]

, (73)

using the binary implication trick. ❑

THEOREM 4.5. (HS✷

horn, discrete orders, irreflexive semantics)
(i) For any class Dis∞ of discrete linear orders containing an infinite order, Dis∞(<)-
satisfiability of HS✷

horn-formulas is undecidable. (ii) Fin(<)-satisfiability of HS✷

horn-
formulas is undecidable.

PROOF. (i) We again reduce ‘non-halting’ to satisfiability, modifying the techniques
employed in the proofs of Theorems 4.3 and 4.4. In both of these proofs, ‘positive’
⟨R⟩-operators are used for two purposes. First, they help to ‘generate’ an infinite unit-
sequence; see formula (27). Second, they help to ‘generate’ appropriate pointers for
the encoding of the nwω×ω-grid via the enumeration in Fig. 7; see formulas grid succ→,
grid succ↑, (63), (66)–(68), (71) and (72). Below, we show how to ‘mimic’ these features
within HS✷

horn, without ‘positive’ ⟨R⟩-operators.
Take any HS-modelM based on a discrete linear orderT, and consider the irreflexive

semantics of the interval relations. To begin with, in case of these semantical choices,
there is no need to ‘generate’ a unique infinite unit-sequence, as we obtain such ‘out of
the box’ with the conjunction φ✷enum of

[U](unit→ ¬[B̄]⊥), (74)

[U]
(

unit→ ¬[E]⊥ ∧ [E] [E]⊥
)

∧ [U]
(

⟨E⟩[E]⊥ ∧ [E] [E]⊥→ unit
)

.

It is not hard to see that if M satisfies φ✷enum, then there exists an infinite sequence
u0 < u1 < . . . < un < . . . of subsequent points in T such that for all x, x′ with x ≤ un,
x′ ≤ um for some n,m < ω, we have M, ⟨x, x′⟩ |= unit iff x = ui and x′ = ui+1 for some
i < ω. (Note that this is not the same unit-sequence as in the proof of Theorem 4.2.) This
unit-sequence has the useful property of having access to the ‘next’ and ‘previous’ unit-
intervals with the A and Ā interval relations, respectively. The following nw-next trick
will also be essential in working with this unit-sequence. For any finite conjunction ϕ

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:31

of literals and any literal λ, we define the formula
[

ϕ⇒ λ
]

as the conjunction of

[U](ϕ→ λ↓ ∧ [B]λ↓ ∧ [B̄]λ↑),

[U](λ↑ ∧ [B]λ↓ → λ∗),

[U](λ∗ → λ→ ∧ [E]λ→ ∧ [E]λ←),

[U](λ← ∧ [E]λ→ → λ),

where λ↓, λ↑, λ→, λ← and λ∗ are fresh variables. It is easy to see the following:

CLAIM 4.16. If M |=
[

ϕ⇒ λ
]

and M, ⟨ui, uj⟩ |= ϕ, then M, ⟨ui−1, uj+1⟩ |= λ.

Soundness: Observe that in order to satisfy
[

ϕ ⇒ λ
]

there are certain restrictions
on ϕ and λ. For example, there is no problem whenever they are both ‘horizontally and
vertically unique in M’ in the following sense: If M, ⟨x, y⟩ |= ϕ then M, ⟨x′, y⟩ ̸|= ϕ and
M, ⟨x, y′⟩ ̸|= ϕ for any x′ ̸= x, y′ ̸= y (and similarly for λ).

Next, we force the proper placement of line- and up-pointers of the nwω×ω-grid in
Fig. 7 in a novel way, different from the ones in the proofs of Theorems 4.3 and 4.4.
In representing this enumeration by our unit-sequence, each line will be followed by
a ‘mirror’-unit, then by a ‘mirrored copy’ of the next line with its locations listed in
reverse order, and then by a proper listing of the next line’s locations. In order to
achieve this, we introduce the following fresh propositional variables:

— grid proper, wall and diag (to mark those unit-intervals that represent line-locations
and the respective wall- and diagonal-ends of each line);

— grid copy (to mark unit-intervals representing the mirror-copies of proper line loca-
tions);

— up and mirror (to mark pointers helping to access the up-neighbour of each location);
— first mirror, last mirror and last up (to mark the beginning and end of each ‘north-west

going’ mirror- and up-sequence, respectively).

See Fig. 12 for the intended placement of these variables, and for an example of how
to access, say, grid-location (1, 4) from (1, 3), and (1, 3) from (1, 2) with the help of up-
and mirror-pointers.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:32 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

We force the proper placement of these variables by the conjunction φ✷grid of the fol-

lowing formulas:

init ∧
[

init⇒ last up
]

,

[U](init→ unit ∧ wall),

[U](unit ∧ ⟨Ē⟩last up→ diag),

[U]
(

diag→ [A] (unit→ first mirror)
)

,
[

first mirror⇒ mirror
]

,
[

wall⇒ up
]

,

[U](unit ∧ ⟨Ē⟩up→ grid proper),
[

mirror ∧ ⟨B⟩grid proper⇒ mirror
]

,

[U](mirror ∧ ⟨B⟩wall→ last mirror),

[U](unit ∧ ⟨Ē⟩mirror→ grid copy),

[U](unit ∧ ⟨Ē⟩last mirror→ wall),
[

up ∧ ⟨B⟩grid copy⇒ up
]

,

[U](up ∧ ⟨B⟩first mirror→ last up).

Then it is not hard to show the following:

CLAIM 4.17. If M, ⟨u0, u1⟩ |= φ✷enum∧φ
✷

grid, then all variables are placed as in Fig. 12.

Finally, given a Turing machine A, we again place the subsequent configurations
of its computation with empty input on the subsequent lines of the nwω×ω-grid (see
Fig. 8), using the function τA defined in (26). We define the formula Ψ✷

A as follows.
First, we take the general constraints (41) and (42), then initialize the computation
with

[U]
(

init→ (q0,£)
)

,

and then force the computation steps with the conjunction of (44) and

[U](first mirror→ £),

[U]
(

grid proper ∧ y ∧ ⟨A⟩z ∧ ⟨Ā⟩x→ [B̄]
(

mirror→ [E] (unit→ τA(x, y, z))
)

)

,

for (x, y, z) ∈WA,

[U]
(

wall ∧ y ∧ ⟨A⟩z → [B̄]
(

mirror→ [E] (unit→ τA(6, y, z))
)

)

, for (6, y, z) ∈ WA,

[U]
(

grid copy ∧ ⟨B̄⟩up ∧ x→ [B̄]
(

up→ [E] (unit→ x)
)

)

, for x ∈ ΓA.

Then we force non-halting with (46). Using Claim 4.17, now it is straightforward to
prove the following:

CLAIM 4.18. If Ψ✷
A is satisfiable in an HS-model based on a discrete linear order,

then A diverges with empty input.

On the other hand, using Fig. 12 it is not hard to see that φ✷enum ∧ φ
✷

grid is satisfiable

(using the irreflexive semantics) in an HS-model that is based on some discrete linear
order T having an infinite ascending chain u0 < u1 < . . . of subsequent points. If A

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:33

✲

✻

u0 u1 u2
. . .

u1

u2

♣
♣
♣

&
wallinit

❜ ✈
diag

∗❢
∗

∗
❢

❢
wall

❜

❜

(1, 2)

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣
♣♣
♣♣
♣ ♣ ♣ ♣ ♣ ♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣ ♣

♣♣
♣♣
♣♣
♣ ♣ ♣ ♣ ♣ ♣

✈

✈
diag

∗❢
∗

∗
∗

❢

❢

❢
wall

❜

❜

❜

(1, 3)
✈

✈

✈
diag

∗❢
∗

∗
∗

∗

❢

❢

❢

❢
wall

❜

❜

❜

❜

(1, 4)
✈

✈

✈

✈
diag

∗❢
∗

∗
∗

∗
∗

last up

last up

last up

last up

last mirror

last mirror

last mirror

last mirror

↙
unit

##line1

#
##
line2

#
#
##
line3

#
#
#

##

line4

✈= grid proper

❢= grid copy

❢= first mirror∗
❜ = up

∗ = mirror

Fig. 12. Encoding the nwω×ω-grid in an HS-model: version 3.

diverges with empty input, then it is not hard to modify the HS-model M given in (47)
to obtain a model satisfying Ψ✷

A . The case when T contains an infinite descending chain
of immediate predecessor points requires ‘symmetrical versions’ of the used formulas
and is left to the reader.

(ii) We reduce ‘halting’ to Fin(<)-satisfiability. In order to achieve this, we omit (46),
and replace (74) with the conjunction of

[U](unit ∧ x→ ¬[B̄]⊥), for x ∈ Σ ∪ {£} ∪
(

(Q− {qf})× (Σ ∪ {£})
)

.

This completes the proof of the theorem. ❑

5. CONCLUSIONS AND OPEN PROBLEMS

Our motivation for introducing the Horn fragments of HS and investigating
their computational behaviour comes from two sources. The first one is ap-
plications for ontology-based access to temporal data, where an ontology pro-
vides definitions of complex temporal predicates that can be employed in user

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:34 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

queries. Atemporal ontology-based data access (OBDA) [Poggi et al. 2008] with
Horn description logics and profiles of OWL 2 is now paving its way to in-
dustry [Kharlamov et al. 2015], supported by OBDA systems such as Star-
dog [Pérez-Urbina et al. 2012], Ultrawrap [Sequeda et al. 2014], and the Optique
platform [Giese et al. 2015; Rodriguez-Muro et al. 2013; Kontchakov et al. 2014].
However, OBDA ontology languages were not designed for applications with tem-
poral data (sensor measurements, historical records, video or audio annotations,
etc.). That the datalog extension of (multi-dimensional) HS✷

horn is sufficiently ex-
pressive for defining useful temporal predicates over historical and sensor data
was shown by Kontchakov et al. [2016], who also demonstrated experimentally
the efficiency of HS✷

horn for query answering. We briefly discussed these appli-
cations in Section 3.1. (Other temporal ontology languages have been developed
based on Horn fragments of the linear temporal logic LTL [Artale et al. 2015a;
Gutiérrez-Basulto et al. 2015; Gutiérrez-Basulto et al. 2016a], computational
tree logic CTL [Gutiérrez-Basulto et al. 2014], and metric temporal logic
MTL [Gutiérrez-Basulto et al. 2016b; Brandt et al. 2017].)

Our second motivation originates in multi-dimensional modal
logic [Gabbay et al. 2003; Kurucz 2007]. Its formalisms try to capture the inter-
actions between modal operators representing time, space, knowledge, actions, etc.,
and are closely connected not only to HS but also to finite variable fragments of various
kinds of predicate logics (as first-order quantifiers can be regarded as propositional
modal operators over interacting universal relations). While the satisfiability problem
of the two-variable fragment of classical predicate logic is NEXPTIME-complete
[Grädel et al. 1997], taming even two-dimensional propositional modal logics over
interacting transitive but not equivalence relations by designing their interesting
fragments turned out to be a difficult task. Introducing syntactical restrictions
(guards, monodicity) [Hodkinson 2006; Degtyarev et al. 2006; Hodkinson et al. 2000;
Hodkinson et al. 2002; Hodkinson et al. 2003] and/or modifying the semantics
by allowing various subsets of product-like domains [Gabelaia et al. 2005a;
Gabelaia et al. 2006; Hampson and Kurucz 2015] or restricting the available val-
uations [Göller et al. 2015] might result in decidable logics that are still very complex,
ranging from EXPSPACE to non-primitive recursive. In this context, it would be
interesting to see whether Horn fragments of multi-dimensional modal formalisms
exhibit more acceptable computational properties. Here, we make a step in this
direction.

This paper has launched an investigation of Horn fragments of the Halpern-Shoham
interval temporal logic HS, which provides a powerful framework for temporal repre-
sentation and reasoning on the one hand, but is notorious for its nasty computational
behaviour on the other. We classified the Horn fragments of HS along the four axes:

— the type of interval modal operators available in the fragment: boxes [R] or dia-
monds ⟨R⟩, or both;

— the type of the underlying timelines: discrete or dense linear orders;
— the type of semantics for the interval relations: reflexive or irreflexive; and
— the number of literals in Horn clauses: two in the core fragment or more.

Both positive and negative results were obtained. The most unexpected negative re-
sults are the undecidability of (i) HScore with both box and diamond operators under
the irreflexive semantics, and of (ii) HS✷

horn over discrete orders under the irreflexive
semantics. Compared with (i) and (ii), the ubiquitous undecidability of HS✸

horn might
look like a natural feature. Fortunately, we have also managed to identify a ‘chink in
HS ’s armour’ by proving that HS✷

horn turns out to be tractable (P-complete) over both
discrete and dense orders under the reflexive semantics and over dense orders under

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:35

the irreflexive semantics. First applications of the HS✷

horn fragment to ontology-based
data access over temporal databases or streamed data have been found by Kontchakov
et al. [2016].

Recently, Wałega [2017] has considered a hybrid version of HS✷

horn (with nominals
and the @-operator) and proved that it is NP-complete over discrete and dense orders
under the reflexive semantics and over dense orders under the irreflexive semantics.

In order to prove the undecidability results mentioned above as well as PSPACE-
hardness of HScore under the reflexive semantics and of HS✷

core over discrete orders
under the irreflexive semantics, we developed a powerful toolkit that utilises the 2D
character of HS and builds on various techniques and tricks from many-dimensional
modal logic. However, we still do not completely understand the computational prop-
erties of the core fragment of HS, leaving the following questions open:

QUESTION 1. Are HScore and HS✸

core decidable over any unbounded class of time-
lines under the reflexive semantics? What is the computational complexity?

QUESTION 2. Is HS✷

core decidable over any unbounded class of discrete timelines
under the irreflexive semantics? What is the computational complexity?

In our Horn-HS logics, we did not restrict the set of available interval relations,
which used to be one of the ways of obtaining decidable fragments. Classifying Horn
fragments of HS along this axis can be an interesting direction for further research
in the area. Syntactically, all of our Horn-HS logics are different. However, we do not
know whether they are distinct in terms of their expressive power. Establishing an ex-
pressivity hierarchy of Horn fragments of HS (taking into account different semantical
choices) can also be an interesting research question.

REFERENCES

ADORNI, G., MARATEA, M., PANDOLFO, L., AND PULINA, L. 2015. An ontology for historical research doc-
uments. In Web Reasoning and Rule Systems - 9th International Conference, RR 2015, Berlin, Germany,
August 4-5, 2015, Proceedings. LNCS Series, vol. 9209. Springer, 11–18.

ALLEN, J. F. 1983. Maintaining knowledge about temporal intervals. Communications of the ACM 26, 11,
832–843.

ALLEN, J. F. 1984. Towards a general theory of action and time. Artificial Intelligence 23, 2, 123–154.

ARTALE, A., KONTCHAKOV, R., KOVTUNOVA, A., RYZHIKOV, V., WOLTER, F., AND ZA-
KHARYASCHEV, M. 2015a. First-order rewritability of temporal ontology-mediated queries. See
Yang and Wooldridge [2015], 2706–2712.

ARTALE, A., KONTCHAKOV, R., LUTZ, C., WOLTER, F., AND ZAKHARYASCHEV, M. 2007. Temporalising
tractable description logics. In Proc. of the 20th International Symposium on Temporal Representation
and Reasoning (TIME). IEEE Computer Society, 11–22.

ARTALE, A., KONTCHAKOV, R., RYZHIKOV, V., AND ZAKHARYASCHEV, M. 2013. The complexity of clausal
fragments of LTL. In Proc. of the 19th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR). LNCS Series, vol. 8312. Springer, 35–52.

ARTALE, A., KONTCHAKOV, R., RYZHIKOV, V., AND ZAKHARYASCHEV, M. 2014. A cookbook for temporal
conceptual data modelling with description logics. ACM Trans. Comput. Log. 15, 3, 25:1–25:50.

ARTALE, A., KONTCHAKOV, R., RYZHIKOV, V., AND ZAKHARYASCHEV, M. 2015b. Tractable interval tempo-
ral propositional and description logics. In Proc. of the 29th AAAI Conference on Artificial Intelligence
(AAAI-15). AAAI Press, 1417–1423.

BALBIANI, P., CONDOTTA, J., AND DEL CERRO, L. F. 2002. Tractability results in the block algebra. J. Log.
Comput. 12, 5, 885–909.

BÖHLEN, M. H., SNODGRASS, R. T., AND SOO, M. D. 1996. Coalescing in temporal databases. In Proc. of
the 22nd Int. Conf. on Very Large Data Bases (VLDB’96). Morgan Kaufmann, 180–191.

BRANDT, S., KALAYCI, E. G., KONTCHAKOV, R., RYZHIKOV, V., XIAO, G., AND ZAKHARYASCHEV, M. 2017.
Ontology-based data access with a Horn fragment of metric temporal logic. In Proc. of AAAI.

BRESOLIN, D., DELLA MONICA, D., GORANKO, V., MONTANARI, A., AND SCIAVICCO, G. 2008. Decidable
and undecidable fragments of Halpern and Shoham’s interval temporal logic: towards a complete classi-

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:36 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

fication. In Proc. of the 15th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR). LNCS Series, vol. 5330. Springer, 590–604.

BRESOLIN, D., DELLA MONICA, D., MONTANARI, A., SALA, P., AND SCIAVICCO, G. 2012a. Interval tem-
poral logics over finite linear orders: the complete picture. In Proc. of the 20th European Conference on
Artificial Intelligence (ECAI). Frontiers in Artificial Intelligence and Applications Series, vol. 242. IOS
Press, 199–204.

BRESOLIN, D., DELLA MONICA, D., MONTANARI, A., SALA, P., AND SCIAVICCO, G. 2012b. Interval tem-
poral logics over strongly discrete linear orders: the complete picture. In Proc. of the 4th International
Symposium on Games, Automata, Logics, and Formal Verification (GANDALF). EPTCS Series, vol. 96.
155–169.

BRESOLIN, D., DELLA MONICA, D., MONTANARI, A., SALA, P., AND SCIAVICCO, G. 2015. On the com-
plexity of fragments of the modal logic of Allen’s relations over dense structures. In Proc. of the 9th
International Conference on Language and Automata Theory and Applications (LATA). LNCS Series,
vol. 8977. Springer, 511 – 523.

BRESOLIN, D., DELLA MONICA, D., MONTANARI, A., AND SCIAVICCO, G. 2014a. The light side of inter-
val temporal logic: the Bernays-Schönfinkel fragment of CDT. Annals of Mathematics and Artificial
Intelligence 71, 1-3, 11–39.

BRESOLIN, D., MUÑOZ-VELASCO, E., AND SCIAVICCO, G. 2014b. Sub-propositional fragments of the inter-
val temporal logic of Allen’s relations. In Proc. of the 14th European Conference on Logics in Artificial
Intelligence (JELIA 2014). LNCS Series, vol. 8761. Springer, 122–136.

CAU, A., HALE, R., DIMITROV, J., ZEDAN, H., MOSZKOWSKI, B. C., MANJUNATHAIAH, M., AND SPIVEY,
M. 2002. A compositional framework for hardware/software co-design. Design Autom. for Emb. Sys. 6, 4,
367–399.

CHAGROV, A. AND ZAKHARYASCHEV, M. 1997. Modal Logic. Clarendon Press, Oxford.

CHEN, C. AND LIN, I. 1994. The computational complexity of the satisfiability of modal Horn clauses for
modal propositional logics. Theor. Comput. Sci. 129, 1, 95–121.

CHEN, C.-C. AND LIN, I.-P. 1993. The computational complexity of satisfiability of temporal Horn formulas
in propositional linear-time temporal logic. Information Processing Letters 45, 3, 131–136.

CIMATTI, A., ROVERI, M., AND TONETTA, S. 2015. HRELTL: A temporal logic for hybrid systems. Inf.
Comput. 245, 54–71.

COHN, A. G., LI, S., LIU, W., AND RENZ, J. 2014. Reasoning about topological and cardinal direction rela-
tions between 2-dimensional spatial objects. J. Artif. Intell. Res. (JAIR) 51, 493–532.

DANTSIN, E., EITER, T., GOTTLOB, G., AND VORONKOV, A. 2001. Complexity and expressive power of logic
programming. ACM Computing Surveys 33, 3, 374–425.

DEGTYAREV, A., FISHER, M., AND KONEV, B. 2006. Monodic temporal resolution. ACM Trans. Comput.
Log. 7, 108–150.

DELLA MONICA, D., GORANKO, V., MONTANARI, A., AND SCIAVICCO, G. 2011. Interval Temporal Logics:
a Journey. Bulletin of the EATCS 105, 73 – 99.

FARIÑAS DEL CERRO, L. AND PENTTONEN, M. 1987. A note on the complexity of the satisfiability of modal
Horn clauses. Journal of Logic Programming 4, 1, 1–10.

GABBAY, D., KURUCZ, A., WOLTER, F., AND ZAKHARYASCHEV, M. 2003. Many-Dimensional Modal Logics:
theory and applications. Studies in Logic and the Foundations of Mathematics Series, vol. 148. Elsevier
Science Publishers.

GABELAIA, D., KONTCHAKOV, R., KURUCZ, A., WOLTER, F., AND ZAKHARYASCHEV, M. 2005a. Combining
spatial and temporal logics: expressiveness vs. complexity. J. Artif. Intell. Res. (JAIR) 23, 167–243.

GABELAIA, D., KURUCZ, A., WOLTER, F., AND ZAKHARYASCHEV, M. 2005b. Products of ‘transitive’ modal
logics. J. Symbolic Logic 70, 993–1021.

GABELAIA, D., KURUCZ, A., WOLTER, F., AND ZAKHARYASCHEV, M. 2006. Non-primitive recursive decid-
ability of products of modal logics with expanding domains. Ann. Pure Appl. Logic 142, 245–268.

GIESE, M., SOYLU, A., VEGA-GORGOJO, G., WAALER, A., HAASE, P., JIMÉNEZ-RUIZ, E., LANTI, D., REZK,
M., XIAO, G., ÖZÇEP, Ö., AND ROSATI, R. 2015. Optique: Zooming in on big data. IEEE Computer 48, 3,
60–67.

GÖLLER, S., JUNG, J., AND LOHREY, M. 2015. The complexity of decomposing modal and first-order theo-
ries. ACM Trans. Comput. Log. 16, 9:1–9:43.

GOLUMBIC, M. C. AND SHAMIR, R. 1993. Complexity and algorithms for reasoning about time: A graph-
theoretic approach. J. ACM 40, 5, 1108–1133.

GORANKO, V. AND OTTO, M. 2006. Model theory of modal logic. In Handbook of Modal Logic. Elsevier,
255–325.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

Horn Fragments of the Halpern-Shoham Interval Temporal Logic 0:37

GRÄDEL, E., KOLAITIS, P. G., AND VARDI, M. Y. 1997. On the decision problem for two-variable first-order
logic. Bulletin of Symbolic Logic 3, 1, 53–69.

GUTIÉRREZ-BASULTO, V., JUNG, J. C., AND KONTCHAKOV, R. 2016a. Temporalized EL ontologies for ac-
cessing temporal data: Complexity of atomic queries. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016. IJCAI/AAAI
Press, 1102–1108.

GUTIÉRREZ-BASULTO, V., JUNG, J. C., AND OZAKI, A. 2016b. On metric temporal description logics. In
ECAI 2016 - 22nd European Conference on Artificial Intelligence, 29 August-2 September 2016, The
Hague, The Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS 2016). Fron-
tiers in Artificial Intelligence and Applications Series, vol. 285. IOS Press, 837–845.

GUTIÉRREZ-BASULTO, V., JUNG, J. C., AND SCHNEIDER, T. 2014. Lightweight description logics and
branching time: A troublesome marriage. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014.
AAAI Press.

GUTIÉRREZ-BASULTO, V., JUNG, J. C., AND SCHNEIDER, T. 2015. Lightweight temporal description logics
with rigid roles and restricted tboxes. See Yang and Wooldridge [2015], 3015–3021.

HALPERN, J. AND SHOHAM, Y. 1991. A propositional modal logic of time intervals. Journal of the ACM 38, 4,
935–962.

HAMPSON, C. AND KURUCZ, A. 2015. Undecidable propositional bimodal logics and one-variable first-order
linear temporal logics with counting. ACM Trans. Comput. Log. 16, 3, 27:1–27:36.

HODKINSON, I. 2006. Complexity of monodic guarded fragments over linear and real time. Ann. Pure Appl.
Logic 138, 94–125.

HODKINSON, I., KONTCHAKOV, R., KURUCZ, A., WOLTER, F., AND ZAKHARYASCHEV, M. 2003. On the
computational complexity of decidable fragments of first-order linear temporal logics. In Proceedings of
TIME-ICTL. IEEE, 91–98.

HODKINSON, I., WOLTER, F., AND ZAKHARYASCHEV, M. 2000. Decidable fragments of first-order temporal
logics. Ann. Pure Appl. Logic 106, 85–134.

HODKINSON, I., WOLTER, F., AND ZAKHARYASCHEV, M. 2002. Decidable and undecidable fragments of
first-order branching temporal logics. In Procs. LICS 2002. IEEE, 393–402.

HUSTADT, U., MOTIK, B., AND SATTLER, U. 2007. Reasoning in description logics by a reduction to disjunc-
tive datalog. J. Autom. Reasoning 39, 3, 351–384.

KHARLAMOV, E., HOVLAND, D., JIMÉNEZ-RUIZ, E., LANTI, D., LIE, H., PINKEL, C., REZK, M., SKJÆVE-
LAND, M. G., THORSTENSEN, E., XIAO, G., ZHELEZNYAKOV, D., AND HORROCKS, I. 2015. Ontology
based access to exploration data at Statoil. In The Semantic Web - ISWC 2015 - 14th International Se-
mantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part II. LNCS Series,
vol. 9367. Springer, 93–112.

KONTCHAKOV, R., PANDOLFO, L., PULINA, L., RYZHIKOV, V., AND ZAKHARYASCHEV, M. 2016. Temporal
and spatial OBDA with many-dimensional Halpern-Shoham logic. In Proc. of the 25th International
Joint Conference on Artificial Intelligence (IJCAI-16). IJCAI/AAAI Press.

KONTCHAKOV, R., REZK, M., RODRIGUEZ-MURO, M., XIAO, G., AND ZAKHARYASCHEV, M. 2014. Answer-
ing SPARQL queries over databases under OWL 2 QL entailment regime. In Proc. of the 13th Int.
Semantic Web Conf. (ISWC 2014), Part I. LNCS Series, vol. 8796. Springer, 552–567.

KRÖTZSCH, M., RUDOLPH, S., AND HITZLER, P. 2013. Complexities of Horn description logics. ACM Trans.
Comput. Log. 14, 1, 2.

KULKARNI, K. G. AND MICHELS, J. 2012. Temporal features in SQL: 2011. SIGMOD Record 41, 3, 34–43.

KURUCZ, A. 2007. Combining modal logics. In Handbook of Modal Logic, P. Blackburn, J. van Benthem, and
F. Wolter, Eds. Studies in Logic and Practical Reasoning Series, vol. 3. Elsevier, 869–924.

LODAYA, K. 2000. Sharpening the undecidability of interval temporal logic. In Proc. of the6th Asian Comput-
ing Science Conference on Advances in Computing Science. LNCS Series, vol. 1961. Springer, 290–298.

LUTZ, C., WOLTER, F., AND ZAKHARYASCHEV, M. 2008. Temporal description logics: A survey. In Proc.
of the 15th Int. Symposium on Temporal Representation and Reasoning (TIME 08). IEEE Computer
Society, 3–14.

MARCINKOWSKI, J. AND MICHALISZYN, J. 2014. The undecidability of the logic of subintervals. Fundam.
Inform. 131, 2, 217–240.

MARX, M. AND REYNOLDS, M. 1999. Undecidability of compass logic. Journal of Logic and Computa-
tion 9, 6, 897–914.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

0:38 D. Bresolin, A. Kurucz, E. Muñoz, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev

MONTANARI, A., PRATT-HARTMANN, I., AND SALA, P. 2010a. Decidability of the logics of the reflexive
sub-interval and super-interval relations over finite linear orders. In Proc. of the 17th International
Symposium on Temporal Representation and Reasoning (TIME). IEEE Computer Society, 27–34.

MONTANARI, A., PUPPIS, G., AND SALA, P. 2010b. Maximal decidable fragments of Halpern and Shoham’s
modal logic of intervals. In Proc. of the 37th International Colloquium on Automata, Languages and
Programming - Part II (ICALP). LNCS Series, vol. 6199. Springer, 345–356.

MONTANARI, A., SCIAVICCO, G., AND VITACOLONNA, N. 2002. Decidability of interval temporal logics over
split-frames via granularity. In Proc. of the 8th European Conference on Logics in Artificial Intelligence
(JELIA). LNAI Series, vol. 2424. Springer, 259–270.

MORET, B. M. 1998. The Theory of Computation. Addison-Wesley.

MUÑOZ-VELASCO, E., PELEGRÍN-GARCÍA, M., SALA, P., AND SCIAVICCO, G. 2015. On coarser interval
temporal logics and their satisfiability problem. In Proc. of the16th Conference of the Spanish Association
for Artificial Intelligence (CAEPIA). LNCS Series, vol. 9422. Springer, 105–115.

NAVARRETE, I., MORALES, A., SCIAVICCO, G., AND VIEDMA, M. A. C. 2013. Spatial reasoning with rect-
angular cardinal relations - the convex tractable subalgebra. Ann. Math. Artif. Intell. 67, 1, 31–70.

NGUYEN, L. 2004. On the complexity of fragments of modal logics. Advances in Modal Logic 5, 318–330.

PÉREZ-URBINA, H., RODRÍGUEZ-DÍAZ, E., GROVE, M., KONSTANTINIDIS, G., AND SIRIN, E. 2012. Eval-
uation of query rewriting approaches for OWL 2. In Proc. of Joint Workshop on Scalable and High-
Performance Semantic Web Systems SSWS+HPCSW 2012. CEUR-WS Series, vol. 943.

POGGI, A., LEMBO, D., CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND ROSATI, R. 2008. Linking
data to ontologies. Journal on Data Semantics X, 133–173.

PRATT-HARTMANN, I. 2005. Temporal prepositions and their logic. Artificial Intelligence 166, 1–2, 1–36.

REYNOLDS, M. AND ZAKHARYASCHEV, M. 2001. On the products of linear modal logics. Journal of Logic
and Computation 11, 6, 909–931.

RODRIGUEZ-MURO, M., KONTCHAKOV, R., AND ZAKHARYASCHEV, M. 2013. Ontology-based data access:
Ontop of databases. In Proc. of the 12th Int. Semantic Web Conf. (ISWC 2013). LNCS Series, vol. 8218.
Springer, 558–573.

SCHWENTICK, T. AND ZEUME, T. 2010. Two-variable logic with two order relations. In Computer Science
Logic, A. Dawar and H. Veith, Eds. LNCS Series, vol. 6247. Springer, 499–513.

SEQUEDA, J. F., ARENAS, M., AND MIRANKER, D. P. 2014. OBDA: query rewriting or materialization? in
practice, both! In Proc. of the 13th Int. Semantic Web Conf. (ISWC 2014), Part I. LNCS Series, vol. 8796.
Springer, 535–551.

SPAAN, E. 1993. Complexity of modal logics. Ph.D. thesis, Department of Mathematics and Computer Sci-
ence, University of Amsterdam.

TERENZIANI, P. AND SNODGRASS, R. T. 2004. Reconciling point-based and interval-based semantics in
temporal relational databases: A treatment of the Telic/Atelic distinction. IEEE Trans. Knowl. Data
Eng. 16, 5, 540–551.

VENEMA, Y. 1990. Expressiveness and completeness of an interval tense logic. Notre Dame Journal of For-
mal Logic 31, 4, 529–547.

VENEMA, Y. 1991. A modal logic for chopping intervals. Journal of Logic and Computation 1, 4, 453–476.

W3C OWL WORKING GROUP. 2012. OWL 2 web ontology language document overview.
http://www.w3.org/TR/owl2-overview/.

WAŁEGA, P. A. 2017. Computational complexity of a hybridized Horn fragment of Halpern-Shoham logic.
In Logic and Its Applications: 7th Indian Conference, ICLA 2017, Kanpur, India, January 5-7, 2017,
Proceedings, S. Ghosh and S. Prasad, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 224–238.

YANG, Q. AND WOOLDRIDGE, M., Eds. 2015. Proceedings of the Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. AAAI Press.

ZHANG, P. AND RENZ, J. 2014. Qualitative spatial representation and reasoning in angry birds: The ex-
tended rectangle algebra. In Principles of Knowledge Representation and Reasoning: Proceedings of the
Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press.

ZHOU, C. AND HANSEN, M. R. 2004. Duration Calculus: A Formal Approach to Real-Time Systems. EATCS:
Monographs in Theoretical Computer Science. Springer.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 0.

