7 research outputs found

    Kinetics of casein hydrolysis by peptidase from Bacillus thuringiensis var. israelensis

    Get PDF
    The kinetics of enzyme reaction is generally studied using the Michaelis-Menten equation and various methods of its linearization. Each method has its advantages and drawbacks, so their comparison for determining the kinetics of new enzymes action is topical. The aim of this work was to study the kinetics of casein hydrolysis catalyzed by new peptidase from Bacillus thuringiensis var. israelensis IMB B-7465 using several methods of enzyme activity assessment and Michaelis-Menten equation linearization. The satisfactory agreement between kinetic constants values obtained by the methods of Lineweaver-Burk, Hanes, Eadie-Hofstee, Cornish-Bowden-Eisenthal was established. The Lineweaver-Burk method was shown to be optimal for determining Km and Vmax of casein hydrolysis. Estimation of caseinolytic activity with the use of ortho-phthalic dialdehyde allowed more accurate Vmax determination compared to the use of Anson and Kunitz methods

    Marrow versus peripheral blood for geno-identical allogeneic stem cell transplantation in acute myelocytic leukemia: Influence of dose and stem cell source shows better outcome with rich marrow

    No full text
    PubMed ID: 12829583Several studies have compared bone marrow (BM) and peripheral blood (PB) as stem cell sources in patients receiving allografts, but the cell doses infused have not been considered, especially for BM. Using the ALWP/EBMT registry, we retrospectively studied 881 adult patients with acute myelocytic leukemia (AML), who received a non-T-depleted allogeneic BM (n = 515) or mobilized PB (n = 366) standard transplant, in first remission (CR1), from an HLA-identical sibling, over a 5-year period from January 1994. The BM cell dose ranged from 0.17 to 29 × 10 8 /kg with a median of 2.7 × 10 8 /kg. The PB cell dose ranged from 0.02 to 77 × 10 8 /kg with a median of 9.3 × 10 8 /kg. The median dose for patients receiving BM (2.7 × 10 8 /kg) gave the greatest discrimination. In multivariate analyses, high-dose BM compared to PB was associated with lower transplant-related mortality (RR = 0.61; 95% CI, 0.39-0.98; P = .04), better leukemia-free survival (RR = 0.65; 95% CI, 0.46-0.91; P = .013), and better overall survival (RR = 0.64; 95% CI, 0.44-0. 92; P = .016). The present study in patients with AML receiving allografts in first remission indicates a better outcome with BM as compared to PB, when the dose of BM infused is rich. © 2003 by The American Society of Hematology

    Marrow versus peripheral blood for geno-identical allogeneic stem cell transplantation in acute myelocytic leukemia: Influence of dose and stem cell source shows better outcome with rich marrow

    No full text
    Several studies have compared bone marrow (BM) and peripheral blood (PB) as stem cell sources in patients receiving allografts, but the cell doses infused have not been considered, especially for BM. Using the ALWP/EBMT registry, we retrospectively studied 881 adult patients with acute myelocytic leukemia (AML), who received a non-T-depleted allogeneic BM (n = 515) or mobilized PB (n = 366) standard transplant, in first remission (CR1), from an HLA-identical sibling, over a 5-year period from January 1994. The BM cell dose ranged from 0.17 to 29 × 108/kg with a median of 2.7 × 108/kg. The PB cell dose ranged from 0.02 to 77 × 10 8/kg with a median of 9.3 × 108/kg. The median dose for patients receiving BM (2.7 × 108/kg) gave the greatest discrimination. In multivariate analyses, high-dose BM compared to PB was associated with lower transplant-related mortality (RR = 0.61; 95% CI, 0.39-0.98; P = .04), better leukemia-free survival (RR = 0.65; 95% CI, 0.46-0.91; P = .013), and better overall survival (RR = 0.64; 95% CI, 0.44-0. 92; P = .016). The present study in patients with AML receiving allografts in first remission indicates a better outcome with BM as compared to PB, when the dose of BM infused is rich. © 2003 by The American Society of Hematology

    Plastic instability: Criteria and computational approaches

    No full text
    corecore