38 research outputs found

    Selective disappearance of medial back muscles in a case of myotonic dystrophy type 1

    Get PDF
    Here, we report a unique case of late-onset myotonic dystrophy type 1 in a 64-year-old woman, with selective disappearance of the medial lower back muscles. We compared the clinical features of this patient with those of a cohort of 29 patients with myotonic dystrophy type 1 to clarify the correlation between clinical features and lower back muscle atrophy. After classification into three subgroups according to muscle atrophy pattern, medial muscle atrophy was present in 17.2% of the patients. Affected patients were older at onset than non-affected patients, and limb muscle power and respiratory function decreased with atrophy progression

    In vivo direct reprogramming of glial linage to mature neurons after cerebral ischemia

    Get PDF
    The therapeutic effect of in vivo direct reprogramming on ischemic stroke has not been evaluated. In the present study, a retroviral solution (1.5-2.0 × 107 /ul) of mock pMX-GFP (n = 13) or pMX-Ascl1/Sox2/NeuroD1 (ASN) (n = 14) was directly injected into the ipsilateral striatum and cortex 3 days after 30 min of transient cerebral ischemia. The reprogrammed cells first expressed neuronal progenitor marker Dcx 7 and 21 days after viral injection, then expressed mature neuronal marker NeuN. This was accompanied by morphological changes, including long processes and synapse-like structures, 49 days after viral injection. Meanwhile, therapeutic improvement was not detected both in clinical scores or infarct volume. The present study provides a future novel self-repair strategy for ischemic stroke with beneficial modifications of the inducer-suppressor balance

    Efficacy and safety of spot heating and ultrasound irradiation on in vitro and in vivo thrombolysis models

    Get PDF
    The feasibility of transcranial sonothrombolysis has been demonstrated, although little is known about the relationships between thermal or mechanical mechanisms and thrombolytic outcomes. Therefore, the present study aims to reveal the effect and safety of temperature and ultrasound through in vitro and in vivo thrombolysis models. Artificial clots in microtubes were heated in a water bath or sonicated by ultrasound irradiation, and then clots weight decrease with rising temperature and sonication time was confirmed. In the in vitro thrombotic occlusion model, based on spot heating, clot volume was reduced and clots moved to the distal side, followed by recanalization of the occlusion. In the in vivo study, the common carotid artery of rats was exposed to a spot heater or to sonication. No brain infarct or brain blood barrier disruption was shown, but endothelial junctional dysintegrity and an inflammatory response in the carotid artery were detected. The present spot heating and ultrasound irradiation models seem to be effective for disintegrating clots in vitro, but the safety of the in vivo model was not fully supported by the data. However, the data indicates that a shorter time exposure could be less invasive than a longer exposure. </jats:p

    Protective Effects of Rivaroxaban on White Matter Integrity and Remyelination in a Mouse Model of Alzheimer’s Disease Combined with Cerebral Hypoperfusion

    Get PDF
    Background:Alzheimer’s disease (AD) is characterized by cognitive dysfunction and memory loss that is accompanied by pathological changes to white matter. Some clinical and animal research revealed that AD combined with chronic cerebral hypoperfusion (CCH) exacerbates AD progression by inducing blood-brain barrier dysfunction and fibrinogen deposition. Rivaroxaban, an anticoagulant, has been shown to reduce the rates of dementia in atrial fibrillation patients, but its effects on white matter and the underlying mechanisms are unclear. Objective:The main purpose of this study was to explore the therapeutic effect of rivaroxaban on the white matter of AD+CCH mice. Methods:In this study, the therapeutic effects of rivaroxaban on white matter in a mouse AD+CCH model were investigated to explore the potential mechanisms involving fibrinogen deposition, inflammation, and oxidative stress on remyelination in white matter. Results:The results indicate that rivaroxaban significantly attenuated fibrinogen deposition, fibrinogen-related microglia activation, oxidative stress, and enhanced demyelination in AD+CCH mice, leading to improved white matter integrity, reduced axonal damage, and restored myelin loss. Conclusions:These findings suggest that long-term administration of rivaroxaban might reduce the risk of dementia

    Twendee X Ameliorates Phosphorylated Tau, α-Synuclein and Neurovascular Dysfunction in Alzheimer's Disease Transgenic Mice With Chronic Cerebral Hypoperfusion

    Get PDF
    BACKGROUND: The pathological impact of chronic cerebral hypoperfusion (CCH) on Alzheimer's disease (AD) is still poorly understood. In the present study, we investigated the role of CCH on an AD mouse model in phosphorylated tau and α-synuclein pathology, neurovascular unit, cerebrovascular remodeling, and neurovascular trophic coupling. Moreover, examined protective effect of a new antioxidant Twendee X (TwX). METHODS: APP23 mice were implanted to bilateral common carotid arteries stenosis with ameroid constrictors to gradually decrease the cerebral blood flow. The effects of the administration of TwX were evaluated by immunohistochemical analysis and Immunofluorescent histochemistry. RESULTS: The present study revealed that the expressions of phospho-tau and phospho-α-synuclein were significantly increased in the APP23 + CCH mice group as compared with wild type and APP23 mice groups (*P CONCLUSIONS: Our findings indicate that administration of a new antioxidative mixture TwX substantially reduced the above neuropathologic abnormalities, suggesting a potential therapeutic benefit of TwX for AD with CCH

    Clinical and Pathological Benefit of Twendee X in Alzheimer's Disease Transgenic Mice with Chronic Cerebral Hypoperfusion

    Get PDF
    BACKGROUND: Multiple pathogeneses are involved in Alzheimer's disease (AD), such as amyloid-β accumulation, neuroinflammation, and oxidative stress. The pathological impact of chronic cerebral hypoperfusion on Alzheimer's disease is still poorly understood. METHODS: APP23 mice were implanted to bilateral common carotid arteries stenosis with ameroid constrictors for slowly progressive chronic cerebral hypoperfusion (CCH). The effects of the administration of Twendee X (TwX) were evaluated by behavioral analysis, immunohistochemical analysis, and immunofluorescent histochemistry. RESULTS: In the present study, chronic cerebral hypoperfusion, which is commonly found in aged Alzheimer's disease, significantly exacerbated motor dysfunction of APP23 mice from 5 months and cognitive deficit from 8 months of age, as well as neuronal loss, extracellular amyloid-β plaque and intracellular oligomer formations, and amyloid angiopathy at 12 months. Severe upregulations of oxidative markers and inflammatory markers were found in the cerebral cortex, hippocampus, and thalamus at 12 months. Twendee X treatment (20 mg/kg/d, from 4.5 to 12 months) substantially rescued the cognitive deficit and reduced the above amyloid-β pathology and neuronal loss, alleviated neuroinflammation and oxidative stress. CONCLUSIONS: The present findings suggested a potential therapeutic benefit of Twendee X for Alzheimer's disease with chronic cerebral hypoperfusion

    Acute Anti-Inflammatory Markers ITIH4 and AHSG in Mice Brain of a Novel Alzheimer's Disease Model

    Get PDF
    Alzheimer's disease (AD) is the most common dementia and a progressive neurodegenerative disorder aggravated by chronic hypoperfusion (HP). Since numerous evidence suggests that inflammation is related with AD pathology, we investigated the expression change of two anti-inflammatory markers, inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) and alpha-2-HS-glycoprotein (AHSG), in a novel AD model (APP23) with HP at 12 month of age. As compared with wild type (WT, n = 10), immunohistochemical analysis showed a higher ITIH4 and a lower AHSG expressions in the cerebral cortex, hippocampus, and thalamus of the APP23 + HP group (n = 12) than the simple APP23 (n = 10) group (*p < 0.05 and **p < 0.01 versus WT; #p < 0.05 and # #p < 0.01 versus APP23). The present study provides an upregulation of anti-inflammatory ITIH4 and a downregulation of pro-inflammatory TNFα-dependent AHSG in a novel AD plus HP mice model

    Familial and sporadic chronic progressive degenerative parietal ataxia

    Get PDF
    Background & objective: Parietal ataxia has been mainly reported as a consequence of acute ischemic stroke, while degenerative parietal ataxia has not been reported. Methods: We investigated clinical characteristics, neuroimaging data, and genetic analysis of patients with cerebellar ataxia plus parietal atrophy. Results: We identified seven patients, including five patients from two families, with chronic progressive cerebellar ataxia due to degenerative parietal atrophy but not stroke. Age at onset of ataxia was 57.6 +/- 6.9 years. All patients showed chronic progressive cerebellar ataxia with severity of ataxic gait > limb ataxia > dysarthria. Patients showed no cognitive dysfunction, muscle weakness, or parkinsonism, and only two patients showed mild sensory disturbances. The seven patients showed lateralized limb ataxia with greater contralateral parietal lobe atrophy by magnetic resonance imaging, and hypoperfusion by single photon emission computed tomography, without any abnormal cerebellar pathology (i.e., crossed cerebellar diaschisis). Pathogenic mutations in the microtubule-associated protein tau gene were not found using two single nucleotide polymorphisms. Conclusions: This is the first description showing unique clinical features of familial and sporadic chronic progressive degenerative parietal ataxia
    corecore