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ABSTRACT 
Recent work on the biophysics of proteins with low complexity, intrinsically disordered domains 

that have the capacity to form biological condensates has profoundly altered the concepts about 

the pathogenesis of inherited and sporadic neurodegenerative disorders associated with 

pathological accumulation of these proteins. In the present review, we use the FUS, TDP-43 

and A11 proteins as examples to illustrate how missense mutations and aberrant post-

translational modifications of these proteins cause amyotrophic lateral sclerosis (ALS) and 

fronto-temporal lobar degeneration (FTLD). 

 

ABBREVIATIONS 

ADMA FUS: asymmetrically di-methylated arginine FUS; 

EWS: Ewing sarcoma protein 

fALS: familial amyotrophic lateral sclerosis; 

FTLD: frontotemporal lobar degeneration 

FUS: fused in sarcoma protein 

hnRNP: heterogeneous nuclear ribonucleoprotein  

PTM: post-translational modification. 

PY-NLS: proline tyrosine nuclear localisation signal 

QGSY: glutamine glycine serine and tyrosine repeats motif 

RGG: arginine glycine glycine repeat motif 

RRM: RNA recognition Motif 

SMN: survival motor neuron 

TAF15: TATA box binding protein 15 

TDP-43: transactive response DNA binding protein 43 

TNPO1: transportin 1/karyopherin β2 

ANXA11: annexin 11 

PSD95: postsynaptic density 95 
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Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease or motor 

neurone disease) and frontotemporal lobar degeneration (FTLD, also known as frontotemporal 

dementia - FTD) are well recognised neurodegenerative diseases. In ALS, the predominant 

clinical features reflect the progressive degeneration of corticospinal motor neurons and spinal 

motor neurons, with progressive weakness together with variable degrees of spasticity, 

hyperreflexia, flaccidity, hyporeflexia and muscle atrophy affecting both limb and cranial motor 

systems. In FTLD, the disease is characterised by progressive degeneration of neurons in the 

hippocampus, temporal lobe and frontal lobe. These neuropathological changes are 

accompanied by changes in behaviour, personality, frontal executive function and language. 

Based on clustering of these clinical features, FTLD is clinically classified into behavioural FTD 

(with cognitive decline and behavioural dysfunction) and primary progressive aphasia 

(comprising semantic dementia and progressive non-fluent aphasia (1). However, while ALS 

and FTLD are conventionally considered as nosologically distinct, there is increasing evidence 

that they represent a spectrum (2-4). Thus, careful examination of patients presenting with 

predominantly a motor phenotype can elicit clinical evidence of frontotemporal dysfunction, and 

vice versa. Moreover, mutations in several genes are associated with both disorders, and in 

some families, affected individuals may present with quite different degrees of motor and 

cortical deficits. 

 

Both disorders are encountered in typical community clinical practices. ALS has an 

incidence of approximately 2 per 100,000 per year. It is usually rapidly progressive, leading to 

death within 3-5 years (but with some notable exceptions)(5, 6). FTLD is the second most 

common form of early-onset dementia, affecting up to 15 per 100,000 (1, 7, 8). The reader is 

referred to several excellent reviews on the epidemiology, clinical features and neuropathology 

of these disorders (ALS (9-12); FTLD: (13-19)). 

 

Genetics of ALS and FTLD: focussing on genes involved in RNA binding and transport. 
ALS and FTLD are etiologically heterogeneous disorders, displaying both inherited and 

apparently sporadic forms. Approximately 10% of ALS cases are familial (9, 11, 20, 21). Up to 

40% of FTLD cases have a positive family history, and in about one third of these cases, the 

disorder is inherited as an autosomal dominant trait (16, 18, 19, 22, 23). Figure 1 contains a list 

of these genes. 
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Prevalent amongst these phase separating proteins are RNA binding proteins, such as 

fused in sarcoma (FUS)(24, 25), transactive response DNA binding protein 43 (TDP-43)(26, 27), 

heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and A2/B1(28), T-cell restricted 

intracellular antigen 1 (TIA1) (29). However, they also include other proteins such as annexin 

A11 (ANXA11) involved in intracellular transport of biological condensates such as stress 

granules (SG) and other ribonucleoprotein (RNP) granules enriched in these RNA binding 

proteins 

 

A common, although not universal neuropathological feature of ALS and FTLD 

associated with mutations in these phase-separating proteins, is aberrant deposition of visible 

aggregates of the corresponding proteins in neurons and glia (30-34). These aggregates differ 

from conventional amyloid aggregates such as Aβ, tau and α-synuclein because they typically 

stain poorly with amyloidophyllic dyes such as thioflavin T, and are partially soluble in urea (18, 

30-32). Furthermore, the mechanisms by which they cause neurotoxicity appear to be distinct 

from those of conventional amyloids (35-38).  

 

As is apparent from the list of genes associated with these diseases, ALS and FTLD can 

be caused by disruption of multiple unrelated biochemical processes. Some of these 

biochemical processes and their underlying genes/proteins have been the subject of recent 

reviews (e.g. SOD1(39-42), C9orf72(43-45)). The current review will therefore focus on 

emerging work on a unique subset of ALS and FTLD-related proteins that can reversibly 

transition between: i) a dispersed (mixed) phase; ii) a condensed phase-separated state as 

liquid protein droplets suspended within a liquid (visually like oil and water); or iii) more 

condensed states such as hydrogels (like jelly dessert), or into fibrillary or glass-like solids 

(Figures 1,2). 

 

A Short Review of the Biophysics of Biological Condensates 

The physics of phase transition of synthetic polymers into droplets and gels are well 

known in materials science. As a result, the terminology used in the emerging field of phase 

transition of biological polymers (typically proteins and nucleic acids) borrows heavily from the 

material science field. Thus, condensation of polymers from a dispersed state into two-phase 

state with liquid droplets suspended in a liquid has been termed “liquid: liquid phase separation” 
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or “coacervation” or “de-mixing” (46, 47). Polymers can also undergo phase transition from a 

dispersed or liquid droplet state into more solid states with different viscoelastic properties 

including “hydrogels” or “networked liquids” similar to jelly dessert, or into more viscous liquid 

“glass-like” states (Figure 2). In contrast to most soluble intracellular proteins (e.g. classical 

enzymes, which exist in a limited number of well-defined three-dimensional shapes (“folds”) that 

are necessary for the functional properties, the assembly of polymers into liquid droplets, 

hydrogels, or glasslike states does not require formation of highly ordered structured 

complexes. Instead, they represent a metastable (nonequilibrium) ensemble of polymers in 

different conformations all interacting with each other. As such, these two-dimensional and 

three-dimensional condensates of biological polymers typically form either as free-standing 

membraneless organelles in the nucleus (e.g. nucleolus) or cytoplasm (e.g. ribonucleoprotein 

granules). They can also form on the surface of intracellular membranes (e.g. the postsynaptic 

density 95 PSD95 complex on postsynaptic membranes(48), synapsin on presynaptic 

vesicles(49, 50) and annexin A11-mediated molecular tethering of RNP granules to 

lysosomes)(51).  

 

A crucial feature that drives phase transition of both synthetic and biological polymers is 

their ability to form multiple interactions with other polymers of the same type (homotypic) or of a 

different type (heterotypic, composed of  either protein X:protein Y or protein: RNA interactions) 

(46, 52-56). These “multivalent” interactions can arise between conventional structurally-ordered 

domains, or more commonly, between disordered domains within the polymers. These intra- 

and inter-polymer interactions reduce the free energy of the polymer-solute system by 

encouraging condensation of the polymers into a distinct, phase-separated volume within the 

solute, which then becomes depleted of the biological polymer (Figure 2).  

 

Early studies in the field of biological condensates focused upon proteins which 

contained at least one “low complexity domain” (LCD) composed of repetitive stretches of amino 

acids that are typically enriched in a subset of amino acids with: i) polar side chains (glycine, 

glutamine, asparagine and serine); ii) nonpolar side chains (proline); iii) positive side chains 

(arginine, lysine); iv) negative side chains (aspartate, glutamate); or v) aromatic side chains 

(phenylalanine, tryptophan and tyrosine). Hydrophobic residues are typically underrepresented 

in these low complexity domains. This unusual amino acid content and the repetitive amino acid 

sequence of these LCDs permit weak intra- and inter-polymer interactions based on: charged 

interactions (e.g. glutamate - arginine); cation-π interactions (between positively charged side 
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chains of arginines or lysines with the free electrons in the aromatic rings of tyrosines, 

tryptophans or phenylalanines); dipole interactions (between glycine, glutamine, asparagine and 

serine residues), as well as π-π interactions (formed by stacking of aromatic rings or between 

the guanidino moiety of arginines and the rings of aromatic amino acids) (57). Proteins or 

protein domains with these features typically do not fold into well-defined three-dimensional 

structures, and are therefore often described as “intrinsically disordered”. However, while these 

features do not support a traditional fixed three-dimensional fold, they do underpin a crucial 

property of these polymers, namely their ability to form networks of intra- and inter-molecular 

interactions within and between phase-separating polymers (53, 55, 58). The propensity 

polymers to condense into phase-separated states is driven by: i) the number (or “valence”) of 

interactions (e.g. the number of cation-π interactions); and ii) the affinity of these interactions 

(which are individually often week, but become biologically significant because of their high 

valence numbers). Crucially, the condensation of these disordered proteins is not dependent on 

any individual residue, or on precise three-dimensional spatial relationships and assumes a 

metastable rather than equilibrium state, which allows for reversibility of the ensemble (59, 60).  

 

Recent studies have revealed that similar multivalency can also be achieved through 

oligomerisation of structured domains of proteins forming biological condensates. For instance, 

dimerization of G3BP1 is required for the assembly of stress granules (61). Similarly, phase 

separation of TDP-43 is driven by its C-terminal LCD and facilitated by oligomerisation of the N-

terminus and/or oligomerisation of a 30 residue 𝛼𝛼helical domain in the C-terminus of TDP-43 

(62, 63). 

 

Condensation of phase separating proteins into more solid (“hard”) condensates such as 

hydrogels and into stable fibrillar condensates likely follows similar rules but with some 

differences. For instance, intermolecular hydrogen bonding of β-sheet domains and the 

presence of glutamate and serine residues appears to be important in “hardening” or “gelation” 

of condensates, while glycine residues promote fluidity (64). The molecular and biophysical 

details of this hardening process are currently under intense scrutiny because they may give 

insight into the formation of pathological, irreversible fibrillar gels. However, electron 

microscopic, solid state nuclear magnetic resonance and x-ray diffraction studies of fibrillar 

condensates of FUS have shown that, in contrast to conventional amyloids, they display : i) 

short (<5 residues) β-sheet domains; ii) few hydrophobic residues but multiple hydrophilic 

residues (which reduce full condensation); and iii) the presence of motifs with “kinks” at glycine, 
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proline or aromatic residues (e.g. residues 37-SYSGYS-42 and 54-SYSSYGQS-61, which minimize 

formation of stable, steric zippers characteristic of conventional amyloids (65, 66). These motifs 

have been termed “low-complexity aromatic-rich kinked segments” or LARKS (65).  

 

Functional implications of physiological phase separation and gelation 
The biophysical properties of proteins forming biological condensates allows them to 

form reversible 2-dimensional or 3-dimensional molecular scaffolds that underpin formation and 

function of variety of intracellular membraneless organelles, such as nucleoli, P-bodies, Cajal 

bodies and RNP granules (see reviews (67-69).  

 

These scaffolds are metastable, dynamic structures that can be rapidly assembled / 

disassembled by: i) altering the relative stoichiometries of co-partitioning scaffolds (e.g. 

changing the relative abundance of mRNA and FUS polymers in FUS RNP granules(70); ii) 

altering the post-translational state (e.g. arginine methylation, serine phosphorylation) which 

changes the multivalency and/or the binding affinity of scaffolds; or iii) by the introduction of 

small molecule modifiers and hydrotropes such as calcium (51) and ATP (71). 

 

The scaffolds can also recruit “cargo” or “clients” such as other proteins or nucleic acids. 

These client molecules can diffuse in/out of the condensate, attach to the scaffolds either by 

binding to the LCD, or to structured domains elsewhere in the scaffold proteins (e.g. RNA 

recognition motifs). The binding can be modulated by scaffold/client stoichiometry and by post-

translational modifications that manipulate client: substrate affinity. The ability of the scaffold 

polymers in membraneless organelles to pick up and locally concentrate functional client 

molecules underpins the role of membraneless organelles t in a wide range of biological 

functions such as transport, storage and local concentration of components of intracellular 

signalling or metabolic machinery. As an example, stress granules allow sequestration of 

translationally-stalled mRNA transcripts during cellular stress (72). Neuronal transport granules 

sequester and transport key cargo elements involved in specialised local protein translation in 

axon terminals and dendrites (73-75). The presynaptic synapsin scaffold in neurons allows the 

physical collation of molecules necessary for assembly and fast release of presynaptic vesicles 

(49, 50). The postsynaptic PSD95 scaffold assembles molecules close to the postsynaptic 

membrane, and for rapid signalling downstream postsynaptic receptors (48). 

 

Consequences of pathological phase separation and gelation 
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Recent work has shown that ALS/FTLD-associated mutations and aberrant ALS/FTLD-

associated post-translational modifications of phase-separating proteins can cause their 

accelerated condensation into pathologically stable, β-sheet rich, intermolecular hydrogen 

bonded, fibrillary gel assemblies (29, 62, 76-81). These pathologically “hardened” condensates 

lose their ability to relax back to liquid droplet or dispersed states (29, 62, 76-81). Such 

defective biophysicsfunction of these proteins would be predicted to cause: i) failure of formation 

of the condensate (e.g. RNP granule); ii) abnormal partitioning and binding of clients into the 

condensate; iii) abnormal transport of condensate; and/or iv) dysregulated release of clients. 

The rest of this review uses FUS, TDP43 and ANXA11 to illustrate these deleterious effects. 

 

FUS 

FUS is a 526 amino acid heterologous nuclear ribonucleoprotein (hnRNP), and a 

member of the FUS, Ewing sarcoma Breakpoint region 1 (EWS/EWSR1) and TATA box binding 

protein 15 (TAF15) (FET) family of RNA binding proteins (82, 83). It is composed of an N-

terminal intrinsically disordered LCD region (residues 1-214) which contains multiple glutamine, 

glycine, serine and tyrosine (QGSY) repeats. In its middle and C-terminal domains, FUS has a 

well-conserved RNA recognition motif (RRM), a zinc finger domain, two domains enriched in 

arginine, glycine, glycine (RGG) motifs, and an atypical proline tyrosine nuclear localisation 

sequence (PY-NLS) (82-86). FUS is predominantly located in the nucleus, where it is involved in 

both DNA repair as well as RNA transcription and processing (82, 83). FUS is also present in 

RNP granules in the cytoplasm in axons and dendrites, where it supports regulated local 

synthesis of proteins involved in synaptic biology and plasticity (Figure 3) (83, 87-89). FUS is 

normally post-translationally modified both by asymmetric dimethylation of arginine by protein 

arginine methyl transferases (90), by deamination by protein arginine deiminases(60, 91) and by 

serine phosphorylation by DNA protein kinase (66, 92). 

 

FUS undergoes physiological reversible phase separation and gelation in a FUS protein 

and RNA concentration-dependent manner (18, 60, 66, 76-78, 80, 93). The condensation arises 

from multivalent cation-π interactions between arginine residues in the C-terminus (n=37) and 

tyrosine residues (n=36) that are predominantly located at the N-terminus of FUS(60). These 

condensates are stabilized by intermolecular hydrogen bonded β-sheets (66, 94). This 

propensity to form biological condensates is tuned by post-translational modification of FUS (60, 

66, 91). Thus, post-translational modification arginines modulates the strength of the cation-π 

interactions (60). Post-translational phosphorylation of serine strongly inhibits phase separation, 
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presumably by disrupting the packing of the LC domains (66).  

 

Aberrant intracytoplasmic inclusions of FUS aggregates are observed in neurons of 

patients with ALS and/or FTLD. Approximately 1-4% of familial ALS (fALS) cases arise from 

missense or frameshift mutations in the C-terminus of FUS (residues 495 and 526), or in the N-

terminal LCD (22, 95). Approximately 10% of sporadic FTLD cases (neuronal intermediate 

filament inclusion body disease (NIFID) and basophilic inclusion body disease (BIBD)) are 

associated with abnormal hypomethylation of arginine residues (33, 96).   

 

Several non-mutually exclusive mechanisms have been proposed for how FUS 

aggregates induce fALS-FUS FTLD-FUS. However, recent work by several groups showing that 

FUS undergoes phase separation and gelation provide a compelling new theory summarised in 

Figure 3 (18, 60, 66, 76-78, 80, 93). This emerging insights suggests that missense and 

truncating mutations associated with fALS-FUS disrupt binding by the TNPO1 chaperone, 

and/or increase the intrinsic propensity of FUS to condense into irreversible intracytoplasmic 

fibrillar condensates. A similar effect arises from pathological post-translational modification of 

FUS. Thus, mutations in the PAD4 protein deiminase cause fALS by abrogating the capacity to 

reduce cation-π interactions by conversion of FUS arginines into citrullines (91). Sporadic 

FTLD-FUS appears to arise from either failure to asymmetrically di-methylate FUS or excessive 

protein arginine demethylation (85, 86, 97, 98).  

 

The overarching net effect of both FUS mutations and of altered FUS posttranslational 

modification in fALS-FUS and FTLD-FUS, is an increased propensity for FUS to form 

irreversible fibrillary condensates that accumulate in neuronal cytoplasm. These irreversible 

aggregates abrogate transport and release of FUS RNP granule cargo involved in local RNA 

translation and metabolism in distal neurites, thereby attenuating new protein synthesis in these 

critical neuronal compartments (60, 78, 99).    

 

TDP-43 
 

TDP-43 accumulates as ubiquitinated intraneuronal inclusions, in a significant proportion 

of ALS and FTLD(100, 101). TDP-43 is a multi-domain RNA binding protein that plays important 

roles in RNA metabolism including transcription, splicing, mRNA and microRNA processing, 

expression and transport (102-104). TDP-43 specifically binds (UG)-rich RNA sequences 
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through the two highly conserved RNA recognition motifs RRM1 and RRM2. TDP-43 contains 

an N-terminal domain (NTD), tandem RNA recognition motifs (RRM1 and RRM2), and an 

intrinsically disordered C-terminal domain (CTD). The N-terminal domain is involved in multimer-

formation, which is critical for its function in RNA splicing (105). The NTD can undergo liquid-

liquid phase separation when induced by single strand DNA (ssDNA)(106).  

 

Liquid-liquid phase separation of TDP-43 in vitro (62, 107) and in cells (108) is driven by 

its intrinsically disordered glycine-rich CTD (residues 267-414). An α-helical structure (residues 

321-340) located between 2 disordered domains in the TDP-43 CTD, plays critical role in phase 

separation. Several ALS-associated mutations occur in this region, and affect phase 

separation(A321G, Q331K and M337V impair liquid-liquid phase separation and enhance 

formation of aggregates(62); N345K and A382T impair monomer exchange between TDP-43 

droplet and monodispersed protein in solution (108). Mutations in hydrophobic residues within 

CTD (W334G) affect phase separation of CTD (109, 110). The 312-317 segment forms 

reversible weak cross-β interactions during gelation, and ALS-causing mutations (A315E and 

A315T) and phosphorylation of the segment can strengthen these normally reversible 

interaction into stable irreversible interactions, causing pathogenic aggregation (111).  

 

 

The mechanism of neurotoxicity for TDP-43 are still the subject of intense study. Like 

FUS mutations, pathological mutant aggregates are associated with impaired axonal transport 

of TDP-43 RNP granules(112, 113). However, RNA binding of TDP-43 is modulates its toxicity. 

Mutations that eliminate TDP-43 binding to RNA abrogates TDP-43-mediated 

neurodegeneration (114-116). TDP-43 toxicity is also modulated by several other genes which 

cause ALS/FTLD, including: p62 (sequestrome 1)(117-119); valosin containing protein (VCP) 

(120-123); and ataxin 2 (124-126). 

 

ANXA11 
Annexin 11 (ANXA11) encodes a widely expressed, 505 amino acid, calcium-dependent 

phospholipid-binding protein. Like other members of the annexin protein family, ANXA11 

contains four highly conserved annexin domains at the C-terminus, which form calcium-

dependent complexes with negatively charged membrane phosphatidylinositols such as 

PI(3,5)P2. Atypically amongst annexins, ANXA11 also has a 196 amino acid, structurally 

disordered, low complexity domain at its N terminus. Biophysical experiments both in 
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biochemical preparations and in cells, confirm that ANXA11 can undergo reversible phase 

transition into liquid droplets and hydrogels in a process that requires the N-terminal LCD(51). 

Missense mutations in ANXA11 are associated with ALS with or without FTLD (127, 128). 

 

Recent work has shown the dual biophysical properties of ANXA11 protein allow it to act 

as a molecular tether that binds neuronal stress granules (and possibly other RNP granules) to 

lysosomes(51). ANXA11 attaches to RNP granules via its structurally disordered N-terminal 

domain, and to lysosomes via the C-terminal annexin repeats. The biophysics of the attachment 

to RNP granules and the mechanisms that control the reversible assembly of the RNP granule-

ANXA11-lysosome complex are under investigation. However the RNP granule: ANXA11 

binding likely requires co-partitioning of the ANX11 LCD into the RNP granule when it can form 

co-scaffolds with intrinsically disordered domains of other RNP granule proteins such as 

G3BP1(51). 

 

Prior to these discoveries, it was unclear how RNP granules, which lack motor protein 

attachments, were transported to the sites of local protein synthesis in remote synaptic 

compartments of neurons. The observation of ANXA11-mediated molecular tethering of RNP 

granules to a subset of LAMP1 -positive cytoplasmic vesicles provides an elegant answer to 

that longstanding enigma, and is fully congruent with the observation of new protein synthesis 

on the surface of endosomes in axons (89). 

 

Crucially, ALS-associated missense mutations in either the N-terminal LCD or in the 

annexin repeat domain of ANXA11 disrupt formation of the molecular tether and are associated 

with impaired delivery of mRNA to axon terminals for local protein synthesis (51). This result is 

congruent with the observation that spinal cord neurons of ALS patients with ANXA11 mutations 

have abundant cytoplasmic aggregates of ANXA11 (127). 

 

DISCUSSION 
The  review describes arapidly emerging area of cell biology related to the previously 

poorly-recognised, but critical role biological condensates in membraneless organelles such as 

stress granules, neuronal transport granules and other RNP granules. The basic biophysics of 

phase separation and gelation and the effect of pathogenic mutations/post-translational 

modifications on these crucial cellular processes is now becoming clearer. There are obvious 

functional similarities between the pathobiological mechanisms underlying neurodegeneration 
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associated with mutations and abnormal post-translational modifications of FUS, TDP-43 and 

ANXA11. These commonalities suggest opportunities for therapeutic interventions that may 

have broad implications across multiple genetic and sporadic forms of ALS/FTLD associated 

with defective function of phase separating proteins. 

 

 The next phase of this work will need to focus on understanding how normal assembly 

and relaxation/disassembly of biological condensates is physiologically regulated in response to 

cellular metabolic state, particularly in neurons. The discovery of a new class of proteins (e.g. 

ANXA11, synapsin and PSD95) that adjoin membrane- and membrane-free biology presents 

the additional opportunity to investigate functional interactions between membrane-bound 

organelles and phase-separated structures in the cytosol This future work may also provide 

some tractable molecular targets for novel approaches to prevent, halt or reverse abnormal 

phase separation of intrinsically disordered proteins, such as FUS, TDP-43 and ANXA11. 
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FIGURE LEGENDS 
 Figure 1 

Genetic overlap between ALS and FTLD. Genetic profiling of familial and sporadic 

cases of ALS and FTLD have revealed a striking level of overlap between genes linked to each 

disease. The shared genetic basis for these seemingly distinct clinical syndromes suggests a 

common core pathophysiology. Most genes linked to either disease cluster into one of three 

groups: proteostasis and sorting, cytoskeleton and transport, or RNA-binding. Additionally, 

several genes across these functional groups encode proteins that form biological condensates 

involved in RNA transport and translation in remote neuronal compartments, strongly linking this 

biophysical phenomenon to disease pathogenesis.  
 

Figure 2 
Biological condensates form free droplets and membrane-associated 

superstructures. In the dispersed state, protein scaffolds (green circles) and cargo/client RNA 

molecules (red lines) are intermixed with solute molecules (black circles). Under appropriate 

conditions, protein scaffolds can phase separate to form a liquid droplet enriched in the scaffold 

protein and client RNA. Some phase separating proteins, such as A11, can also assemble as 

2D- and 3D condensates on membrane surfaces  

(Edited to correspond to panel labels) 

A – Monodisperse FUS 

B – FUS condensates  

C – Annexin A11 enables the attachment of biological condensates to membranes. 

Liposomes (blue), ANXA11 (red), G3BP1 RNPs (green). 

D– In the dispersed state, protein scaffolds (green dots) and cargo/client RNA molecules 

(magenta dots) are intermixed with solute molecules (grey dots). 

E - Under appropriate conditions, protein scaffolds can phase separate to form liquid 

droplets enriched in the scaffold protein and client RNA. Owing to their lack of delimiting 

membranes, these structures can fuse with each other to form larger condensates 

F – Some phase separating proteins, such as annexin A11(orange dots), can assemble 

as 2D and 3D condensates on membranes, enabling the scaffolding of non-lipid-binding 

condensates 
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Figure 3. 

 The roles of proteins forming biological condensates in the transport and local 

translation of RNAs in remote synaptic compartments in neurons. These proteins form RNP 

granule scaffolds for binding of RNA and RNA translation machinery, and for the subsequent 

long-range intracellular transport of these granules to distal neuronal compartments such as 

dendritic spines and axon terminals (green arrows). Disease associated mutations and 

pathological posttranslational modification of these proteins result in the formation of irreversible 

aggregates that sequester RNP granule cargo, and/or failure of intra-neuronal transport of the 

RNP granules (red arrows).  
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