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Abstract 

Alzheimer’s disease (AD) is the most common dementia and a progressive 

neurodegenerative disorder aggravated by chronic hypoperfusion (HP). Since a lot of evidence 

suggest that inflammations are related with AD pathology, we investigated the expression 

change of two anti-inflammatory markers, inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) 

and alpha-2-HS-glycoprotein (AHSG), in a novel AD model (APP23) with HP at 12 month of 

age. As compared with wild type (WT, n=10), immunohistochemical analysis showed a higher 

ITIH4 and a lower AHSG expressions in the cerebral cortex, hippocampus, and thalamus of 

APP23 + HP group (n=12) than simple APP23 (n=10) group (*p < 0.05 and **p < 0.01 vs WT; 

# p < 0.05 and ## p < 0.01 vs APP23). The present study provides an up-regulation of anti-

inflammatory ITIH4 and a down-regulation of pro-inflammatory TNFα-dependent AHSG in a 

novel AD plus HP mice model. 
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Introduction 

Alzheimer’s disease (AD) is the most common dementia accounting for 69% in elderly 

population more than 75 years old [1]. Cerebrovascular pathologies such as cerebral amyloid 

angiopathy, blood-brain barrier (BBB) disruption, and microvascular degeneration are 

confirmed in 60-90% of AD patients [2, 3]. A lot of studies show the involvement of the 

oxidative stress and neuroinflammatory processes in AD pathology [4-11]. 

Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) is expressed in an acute phase of 

several pathological situations including infections and inflammations, and is associated with 

cell proliferation and migration [12]. Alpha-2-HS-glycoprotein (AHSG) is a novel anti-

inflammatory hepatokine under acute injuries and infections, but is regulated by pro-

inflammatory TNFα [13-15]. In recent years, ITIH4 and AHSG are reported as serum 

biomarkers in AD patient, but have not been fully investigated in AD brain [12, 16]. 

In the present study, therefore, we investigated the expression changes of ITIH4 and 

AHSG in the brain of novel AD model mice with chronic hypoperfusion (HP) to find the 

relation with AD pathology. 

 

Materials and methods 

Experimental model 

The APP23 mouse model overexpresses human APP751 carrying the Swedish double 
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mutation (KM670/671NL) driven by a Thy1 promoter [17]. All animal experiments were 

performed in compliance with a protocol approved by the Animal Care and Use Committee of 

the Graduate School of Medicine and Dentistry of Okayama University (OKU-2014-095). This 

is a part of the whole project mainly focusing on inflammation in AD mice model. All used 

control mice were C57BL/6J. Animals were accommodated in 12/12 hours (h) light-dark cycle 

with a controlled temperature around 23°C and free access to food and water.  

Three groups were designed in this study: wild type mice (WT + sham surgery, n=10), 

APP23 group (APP23 + sham surgery, n=10), and APP23 with chronic hypoperfusion (HP) 

group (APP23 + HP, n=12). Groups comprised approximately equal numbers of male and 

female mice. 

Ameroid constrictors (ACs) with an inner diameter (D) of 0.75 mm (Research Instruments 

NW, Lebanon, OR, USA) were applied to induce chronic cerebral hypoperfusion. For the CCH 

group, a cervical incision was made and ACs were applied to bilateral common carotid arteries 

(BCCAs) at 4 months (M) of age. At the time points of 1, 3, 7, 14 and 28 d after surgery, a laser-

Doppler flowmeter (FLO-C1, Omegawave, Tokyo, Japan) was used to measure cerebral blood 

flow (CBF) as our previous report (Zhai et al., 2016). 

 

Tissue preparation 

At 12M of age, mice were deeply anesthetized and then perfused with 20ml of ice-cold 
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phosphate-buffered saline (PBS, pH 7.4), followed by 20ml of ice-cold 4% paraformaldehyde 

(PFA) in 0.1 mol/L phosphate buffer. The brains were removed and post-fixed in the same 

fixation overnight at 4°C. After washing with PBS, the fixed tissues were transferred into 10, 

20 and 30% (wt/vol) sucrose in PBS, each sucrose incubation step was for 24 h at 4°C. Then, 

the brains were frozen in dry ice and kept at -80°C. 20-μm thick coronal sections were prepared 

on a cryostat at -20°C and mounted on silane-coated glass slides. 

 

Single immunohistochemistry analysis 

For single immunohistochemistry, after incubation in 0.3% hydrogen peroxide/methanol 

for 30 min followed by 5% bovine serum albumin (BSA) in PBS with 0.1% triton for 1 h, the 

sections were stained overnight at 4°C with the following primary antibodies: rabbit anti-inter-

alpha-trypsin inhibitor heavy chain H4 (ITIH4) antibody (1:50, Proteintech Group, Chicago, 

IL); rabbit anti-alpha-2-HS-glycoprotein (AHSG) antibody (1:50, Cloud-Clone Corp, Houston, 

TX, USA). After washed with PBS, brain sections were treated with suitable biotinylated 

secondary antibodies (1:500; Vector Laboratories, Burlingame, CA) for 2 h at room 

temperature. Then the sections were incubated with the avidin-biotin-peroxidase complex 

(Vectastain ABC Kit; Vector) for 30 min and visualized with 3, 3′-diaminobenzidine (DAB). 

Negative control sections were stained in the same manner as described above except for the 

primary antibodies.  
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Double immunofluorescence analysis 

To analyze the localizations of ITIH4 and AHSG in neuronal cells, double 

immunofluorescent stainings for ITIH4 plus neuronal nuclear antigen (NeuN) and AHSG plus 

NeuN were performed. NeuN is used as a biomarker for neurons. Brain sections were incubated 

with 5% BSA in PBS for 1 h at room temperature. The following primary antibodies were used: 

rabbit anti-ITIH4 antibody (1:50, Proteintech Group, Chicago, IL); rabbit anti-AHSG antibody 

(1:50, Cloud-Clone Corp, Houston, TX, USA); mouse anti-NeuN antibody (1:200; Millipore, 

Burlington, MA). After rinsing in PBS, the sections were incubated with secondary antibodies 

conjugated to Alexa 488 and 555 (1:500, Molecular Probes, Eugene, OR) for 1 h at room 

temperature. The sections were then mounted using Vectashield mounting medium containing 

DAPI (Vector Laboratories, Burlingame, CA, USA), and scanned with a confocal microscope 

equipped with argon and HeNe1 laser (LSM-780; Zeiss, Jena, Germany). 

 

Quantitative analysis 

For each measurement, 3 sections per brain and 4 random selected regions were then 

analyzed with a light microscope (Olympus BX-51, Tokyo, Japan). The pixel intensity of ITIH4 

and AHSG were measured at cerebral cortex (CTX), hippocampus (HI), and thalamus (TH) by 

an image processing software (Scion Image, Scion Corporation, Frederick, MD, USA). 
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Statistical analysis 

All data are presented as mean ± SD. Statistical comparisons were performed using one-

way analysis of variance based on a Tukey-Kramer post comparison. p < 0.05 was considered 

statistically significant. 

 

Results 

ITIH4 and AHSG expressions in CTX 

Both ITIH4 and AHSG were obviously stained in neurons of CTX of WT mice (Fig. 1, 

top left). Although no significant difference of the pixel intensity of both ITIH4 and AHSG was 

detected between WT and APP23 group in the CTX, the pixel intensity of ITIH4 significantly 

increased in the APP23 + HP group as compared with the WT and APP23 group (Fig. 1, **p < 

0.01 vs WT; # p < 0.05 vs APP23). In contrast, the pixel intensity of AHSG significantly 

decreased in the APP23 + HP group as compared with the WT group (Fig. 1, *p < 0.05 vs WT). 

 

ITIH4 and AHSG expressions in hippocampus (HI) 

The ITIH4 was slightly stained in neurons of CA1, CA2 and CA3 (Fig. 2, top). Compared 

with the WT and APP23 group, the pixel intensity of ITIH4 significantly increased in the CA1, 

CA2 and CA3 of APP23 + HP group (Fig. 2, *p < 0.05 and **p < 0.01 vs WT; # p < 0.05 and ## 
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p < 0.01 vs APP23). The AHSG was stained detected in the neurons of CA1, CA2 and CA3 of 

WT and APP23 mice (Fig. 3, top). While, the pixel intensity of AHSG significantly decreased 

in the CA1, CA2 and CA3 of APP23 + HP group compared with WT and APP23 group (Fig. 3, 

**p < 0.01 vs WT; ## p < 0.01 vs APP23). 

Both ITIH4 and AHSG were stained in the neurons of dentate gyrus (DG) (Fig. 4, top). 

Although no significant difference was observed in the pixel intensity of both ITIH4 and AHSG 

between WT and APP23 group, the pixel intensity of ITIH4 significantly increased in APP23 

+ HP group compared with WT and APP23 group (Fig. 4, **p < 0.01 vs WT; ## p < 0.01 vs 

APP23). In contrast, the intensity of AHSG significantly decreased in APP23 + HP group 

compared with the WT and APP23 group (Fig. 4, **p < 0.01 vs WT; ## p < 0.01 vs APP23). 

 

ITIH4 and AHSG expression in TH  

In the TH, the ITIH4 was scarcely detected in the neurons of WT mice (Fig. 5, top left), 

which was enhanced in both APP23 and APP23 + HP mice. Although no significant difference 

of the pixel intensity was detected between WT and APP23 group, the pixel intensity of ITIH4 

significantly increased in the APP23 + HP group as compared with WT and APP23 mice (Fig. 

5, **p < 0.01 vs WT; ## p < 0.01 vs APP23). The AHSG was stained in the neurons of TH of 

WT mice. The pixel intensity of AHSG decreased in APP23 group compared with WT group, 

which was further emphasized in APP23 + HP group (Fig. 5, *p < 0.05 and **p < 0.01 vs WT; 
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## p < 0.01 vs APP23). 

 

Localizations of ITIH4 and AHSG 

Double immunofluorescence analysis showed that both ITIH4 and AHSG were expressed 

in neurons of both CTX and HI (Figs 6, 7), and mainly localized in the cytoplasm of neurons 

(Fig. 8).  

 

Discussion   

In the present study, we showed the up-regulated expression of ITIH4 and the down-

regulation of AHSG in the neurons of CTX, HI, and TH of APP23 + HP mice model (Figs. 1-

8).  

ITIH4 belongs to the family of inter-alpha inhibitor proteins (IAIPs), which is expressed 

in a lot of tissues including liver, intestine, kidney, stomach, placenta and brain to signify their 

diverse biological functions by inhibiting serine proteases [13, 18-21]. ITIH4 is related to cell 

proliferation and migration during the development of the acute-phase inflammatory response 

and plays a role in the response for the inflammation of trauma and infection independent from 

pro-inflammatory TNFα [12, 22-24]. ITIH4 is a member of liver-derived ITI family having an 

anti-apoptotic and matrix-stabilizing functions. However, the role of ITIH4 has not been 

examined in cerebral ischemia or Alzheimer’s disease. Therefore, we used a mouse model of 



10 

 

AD with HP to examine the pathological changes of ITIH4 in mice brain. Our previous studies 

showed that HP dramatically accelerated the progression of AD pathology accompanied with 

inflammation [25]. In addition, ITIH4 is regulated by IL-6, which regulates inflammation [26-

28]. In the present study, HP significantly increased the expression of ITIH4 in the CTX, HI, 

and TH of APP23 mice (Figs. 1, 2, 4-8), suggesting that HP promoted the neuro-inflammation 

in the brains of AD model mice and ITIH4 may serve as a potential indicator of the progression 

of AD pathology. 

In the response to injury and infection, the liver release many acute phase proteins 

including AHSG. AHSG is a cysteine protease inhibitor secreted from the liver to inhibit 

vascular calcification by preventing spontaneous mineral precipitation in the vasculature [29-

31]. AHSG is regulated by several pro-inflammatory mediators [32], and produced as anti-

inflammatory protein primarily in the liver under an acute inflammation phase[32]. However, 

AHSG is a negative acute phase reactant protein under the regulation of pro-inflammatory 

TNFα, attenuating inflammatory responses to injury and infection [13, 14]. In the present study, 

AHSG expression decreased in brains of APP23 + HP group (Fig. 1, 3, 4, 5), probably due to 

suppressions by pro-inflammatory TNFα, IL-1, and IL-6 [13, 14]. A previous paper showed the 

lower serum level of AHSG was related to the cognitive impairment in the mild-to-moderate 

AD patients accompanied by the higher concentration of TNF-α [16]. The decreased AHSG 

level may indicate the severity of AD progression in the present study (Figs. 1, 3, 4-8). 
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    In summary, the present study demonstrated the expression changes of ITIH4 and AHSG 

in the brains of AD model mice accompanied by HP, suggesting the potential roles of ITIH4 

and AHSG as candidate biomarkers to predict the severity of AD progression. 
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Figure Legends 

 

Fig. 1) Immunohistochemical stainings of ITIH4 and AHSG in the CTX of WT, APP23 and 

APP23 + HP groups (top), showing an increased pixel intensity of ITIH4 and a decreased pixel 

intensity of AHSG in APP23 + HP group (*p < 0.05 and **p < 0.01 vs WT; #p < 0.05 vs APP23). 

Scale bar=50 μm. 

Fig. 2) Immunohistochemical stainings of ITIH4 in the hippocampal CA1, CA2, and CA3 of 

WT, APP23 and APP23 + HP groups (top), showing increased pixel intensities in CA1, CA2, 

and CA3 of APP23 + HP group (*p < 0.05 and **p < 0.01 vs WT; #p < 0.05 and ##p < 0.01 vs 

APP23). Scale bar=50 μm. 

Fig. 3) Immunohistochemical stainings of AHSG in the hippocampal CA1, CA2, and CA3 of 

WT, APP23 and APP23 + HP groups (top), showing decreased pixel intensities in CA1, CA2, 

and CA3 of APP23 + HP group (**p < 0.01 vs WT; ##p < 0.01 vs APP23). Scale bar=50 μm. 

Fig. 4) Immunohistochemical stainings of ITIH4 and AHSG in the hippocampal DG of WT, 

APP23 and APP23 + HP groups (top), showing an increased pixel intensity of ITIH4 and a 

decreased pixel intensity of AHSG in APP23 + HP group (**p < 0.01 vs WT; ##p < 0.01 vs 

APP23). Scale bar=50 μm. 

Fig. 5) Immunohistochemical stainings of ITIH4 and AHSG in the TH of WT, APP23 and 

APP23 + HP groups (top), showing an increased pixel intensity of ITIH4 and a decreased pixel 

intensity of AHSG in APP23 + HP group (*p < 0.05 and **p < 0.01 vs WT; ##p < 0.01 vs APP23). 
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Scale bar=50 μm. 

Fig. 6) Double immunofluoresecnt stainings of ITIH4 and NeuN in the CTX and HI of WT, 

APP23 and APP23 + HP groups, showing the localization of ITIH4 in neurons. Scale bar=50 

μm. 

Fig. 7) Double immunofluoresecnt stainings of AHSG and NeuN in the CTX and HI of WT, 

APP23 and APP23 + HP groups, showing the localization of AHSG in neurons. Scale bar=50 

μm. 
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Fig. 8) Double immunofluoresecnt stainings of ITIH4 or AHSG plus NeuN in the CTX of WT, 

APP23 and APP23 + HP groups, showing the main localizations of both markers in the 
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cytoplasm of neurons. Scale bar=20 μm. 


