46 research outputs found

    New Insights into Development of Female Reproductive Tract—Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development

    No full text
    The reproductive tract in mammals emerges from two ductal systems during embryogenesis: Wolffian ducts (WDs) and Mullerian ducts (MDs). Most of the female reproductive tract (FRT) including the oviducts, uterine horn and cervix, originate from MDs. It is widely accepted that the formation of MDs depends on the preformed WDs within the urogenital primordia. Here, we found that the WD mesenchyme under the regulation of Hedgehog (Hh) signaling is closely related to the developmental processes of the FRT during embryonic and postnatal periods. Deficiency of Sonic hedgehog (Shh), the only Hh ligand expressed exclusively in WDs, prevents the MD mesenchyme from affecting uterine growth along the radial axis. The in vivo cell tracking approach revealed that after WD regression, distinct cells responding to WD-derived Hh signal continue to exist in the developing FRT and gradually contribute to the formation of various tissues such as smooth muscle, endometrial stroma and vascular vessel, in the mouse uterus. Our study thus provides a novel developmental mechanism of FRT relying on WD

    Recent Insights into Long Bone Development: Central Role of Hedgehog Signaling Pathway in Regulating Growth Plate

    No full text
    The longitudinal growth of long bone, regulated by an epiphyseal cartilaginous component known as the “growth plate”, is generated by epiphyseal chondrocytes. The growth plate provides a continuous supply of chondrocytes for endochondral ossification, a sequential bone replacement of cartilaginous tissue, and any failure in this process causes a wide range of skeletal disorders. Therefore, the cellular and molecular characteristics of the growth plate are of interest to many researchers. Hedgehog (Hh), well known as a mitogen and morphogen during development, is one of the best known regulatory signals in the developmental regulation of the growth plate. Numerous animal studies have revealed that signaling through the Hh pathway plays multiple roles in regulating the proliferation, differentiation, and maintenance of growth plate chondrocytes throughout the skeletal growth period. Furthermore, over the past few years, a growing body of evidence has emerged demonstrating that a limited number of growth plate chondrocytes transdifferentiate directly into the full osteogenic and multiple mesenchymal lineages during postnatal bone development and reside in the bone marrow until late adulthood. Current studies with the genetic fate mapping approach have shown that the commitment of growth plate chondrocytes into the skeletal lineage occurs under the influence of epiphyseal chondrocyte-derived Hh signals during endochondral bone formation. Here, we discuss the valuable observations on the role of the Hh signaling pathway in the growth plate based on mouse genetic studies, with some emphasis on recent advances

    External genitalia formation: role of fibroblast growth factor, retinoic acid signaling, and distal urethral epithelium

    No full text
    The process of fetal external genitalia development might be divided into two processes. The first process accomplishes the initial outgrowth of the anlage, genital tubercle (GT). Previous analysis suggests that the distal urethral epithelium (DUE) of the GT, the Fgf8-expressing region, regulates the outgrowth of the GT. The second process eventually generates the sexually dimorphic development of the external genitalia, which is dependent on the action of steroid hormones. Several key genes, for example, RARs, RXRs, RALDH2, and CYP26, were dynamically expressed during GT development. The teratogenic dose of RA at 9.0 d.p.c. induced a drastic malformation of the urethral plate during GT formation, but did not show gross abnormalities in its outgrowth. In RA-treated embryos, Fgf8 expression was still detected in the distal GT regions. Possible regulatory roles of the FGF and RA signaling systems in external genitalia formation are discussed

    New Insights into Development of Female Reproductive Tract—Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development

    No full text
    The reproductive tract in mammals emerges from two ductal systems during embryogenesis: Wolffian ducts (WDs) and Mullerian ducts (MDs). Most of the female reproductive tract (FRT) including the oviducts, uterine horn and cervix, originate from MDs. It is widely accepted that the formation of MDs depends on the preformed WDs within the urogenital primordia. Here, we found that the WD mesenchyme under the regulation of Hedgehog (Hh) signaling is closely related to the developmental processes of the FRT during embryonic and postnatal periods. Deficiency of Sonic hedgehog (Shh), the only Hh ligand expressed exclusively in WDs, prevents the MD mesenchyme from affecting uterine growth along the radial axis. The in vivo cell tracking approach revealed that after WD regression, distinct cells responding to WD-derived Hh signal continue to exist in the developing FRT and gradually contribute to the formation of various tissues such as smooth muscle, endometrial stroma and vascular vessel, in the mouse uterus. Our study thus provides a novel developmental mechanism of FRT relying on WD

    Reactivation of CDX2 in Gastric Cancer as Mark for Gene Silencing Memory

    No full text
    To explore the epigenetic mechanism that reactivates CDX2 (a homeobox transcription factor that serves as a tumor-suppressor gene) in intestinal-type gastric cancer during cancer progression, we examined the methylation status of the CDX2 gene promoter and the expression pattern of methyl-CpG binding protein-2 (MeCP2). From archives of the pathology records of surgically excised advanced stomach cancer cases in the Department of Molecular Pathology, Ehime University in a past decate (n=265), 10 cases of intestinal-type tubular adenocarcinoma, well-differentiated type (wel) with minor poorly-differentiated adenocarcinoma (por) components were selected. The expression pattern of CDX2, MUC2 and MeCP2 in these 10 cases was analyzed by immunohistochemistry. The cancerous and non-cancerous areas were selectively obtained by microdissection, and the methylation status of the CDX2 promoter of each area was assessed by methylation-specific polymerase chain reaction (MSP). In all 10 cases, CDX2 expression was clearly observed in the nucleus of the non-cancerous background of the intestinal metaplasic area, where the unmethylation pattern of the CDX2 gene promoter prevailed with reduced MeCP2 expression. In this metaplastic area, CDX2 expression was co-localized with its target gene, MUC2. CDX

    Novel GLI3 variant causing overlapped Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS) phenotype with agenesis of gallbladder and pancreas

    Get PDF
    Background: A proper balance between the activator and the repressor form of GLI3, a zinc-finger transcription factor downstream of hedgehog signaling, is essential for proper development of various organs during development. Mutations in different domains of the GLI3 gene underlie several congenital diseases including Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS). Case presentation: Here, we describe the case of an overlapped phenotype of these syndromes with agenesis of the gallbladder and the pancreas, bearing a c.2155 C > T novel likely pathogenic variant of GLI3 gene by missense point mutation causing p.P719S at the proteolytic cleavage site. Conclusions: Although agenesis of the gallbladder and the pancreas is uncommon in GLI3 morphopathy, a slight difference in the gradient or the balance between activator and repressor in this case may hinder sophisticated spatial and sequential hedgehog signaling that is essential for proper development of gallbladder and pancreas from endodermal buds
    corecore