175 research outputs found

    Imaging of isotope diffusion using atomic-scale vibrational spectroscopy

    Full text link
    The spatial resolutions of even the most sensitive isotope analysis techniques based on light or ion probes are limited to a few hundred nanometres. Although vibration spectroscopy using electron probes has achieved higher spatial resolution, the detection of isotopes at the atomic level has been challenging so far. Here we show the unambiguous isotopic imaging of 12C carbon atoms embedded in 13C graphene and the monitoring of their self-diffusion via atomic level vibrational spectroscopy. We first grow a domain of 12C carbon atoms in a preexisting crack of 13C graphene, which is then annealed at 600C for several hours. Using scanning transmission electron microscopy electron energy loss spectroscopy, we obtain an isotope map that confirms the segregation of 12C atoms that diffused rapidly. The map also indicates that the graphene layer becomes isotopically homogeneous over 100 nanometre regions after 2 hours. Our results demonstrate the high mobility of carbon atoms during growth and annealing via selfdiffusion. This imaging technique can provide a fundamental methodology for nanoisotope engineering and monitoring, which will aid in the creation of isotope labels and tracing at the nanoscale

    Bronchial damage and diffuse alveolar hemorrhage following chlorine gas inhalation: A case report

    Get PDF
    Chlorine is a toxic inhalant and sources of exposure for individuals include accidental releases of chlorine vapor due to industrial or chemical transportation accidents. Inhalation of a large quantity of gas may cause circulatory and respiratory disorders or even mortality; however, the effects of a small amount of chlorine gas may be asymptomatic. The present case study presents a successfully treated 55‑year‑old male patient exposed to chlorine gas, resulting in bronchial damage and diffuse alveolar hemorrhage. Endobronchial and alveolar injuries were evaluated by direct observation using fiberoptic bronchoscopy (FB) and analyzing bronchoalveolar lavage fluid obtained by FB. Taking a precise medical history from the patient is crucial to correctly diagnose toxic gas inhalation. In addition, a timely and proper evaluation with chest imaging as well as FB may provide useful clinical information. Therefore, clinicians should consider performing FB if the circumstances permit

    Increased Interleukin-8 in Epithelial Lining Fluid of Collapsed Lungs During One-Lung Ventilation for Thoracotomy

    Get PDF
    The present study was designed to evaluate inflammatory changes in collapsed lungs during one-lung ventilation using the assistance of a bronchoscopic microsampling probe. Serial albumin and interleukin (IL)-8 concentrations in epithelial lining fluid (ELF) were measured in seven patients undergoing resection of lung tumors. The samples were taken after induction of anesthesia (baseline), 30 min after one-lung ventilation was started (point 2), just before resuming two-lung ventilation (point 3), and 30 min after two-lung ventilation was restarted (point 4). The albumin and IL-8 concentrations in ELF were significantly increased at point 2 and point 3, respectively, and remained to be high, compared to the baseline. The increase in IL-8 at point 3 was correlated with the interval of one-lung ventilation; however, none developed specific acute lung injury. These findings suggest that inflammatory changes can occur on the epithelium of a collapsed lung even in patients who underwent successful and standard thoracic surgery.ArticleINFLAMMATION. 35(6):1844-1850 (2012)journal articl
    corecore