18,398 research outputs found

    Piezoelectric/Triboelectric Nanogenerators for Biomedical Applications

    Get PDF
    Bodily movements can be used to harvest electrical energy via nanogenerators and thereby enable self-powered healthcare devices. In this chapter, first we summarize the requirements of nanogenerators for the applications in biomedical fields. Then, the current applications of nanogenerators in the biomedical field are introduced, including self-powered sensors for monitoring body activities; pacemakers; cochlear implants; stimulators for cells, tissues, and the brain; and degradable electronics. Remaining challenges to be solved in this field and future development directions are then discussed, such as increasing output performance, further miniaturization, encapsulation, and improving stability. Finally, future outlooks for nanogenerators in healthcare electronics are reviewed

    Algebraic Bethe ansatz for the elliptic quantum group Eτ,η(sln)E_{\tau,\eta}(sl_n) and its applications

    Full text link
    We study the tensor product of the {\it higher spin representations} (see the definition in Sect. 2.2) of the elliptic quantum group Eτ,η(sln)E_{\tau,\eta}(sl_n). The transfer matrices associated with the Eτ,η(sln)E_{\tau,\eta}(sl_n)-module are exactly diagonalized by the nested Bethe ansatz method. Some special cases of the construction give the exact solution for the ZnZ_n Belavin model and for the elliptic An−1A_{n-1} Ruijsenaars-Schneider model.Comment: 23 pages, latex file, to appear in Nucl. Phys.

    An Explicit Scheme for Incorporating Ambipolar Diffusion in a Magnetohydrodynamics Code

    Full text link
    We describe a method for incorporating ambipolar diffusion in the strong coupling approximation into a multidimensional magnetohydrodynamics code based on the total variation diminishing scheme. Contributions from ambipolar diffusion terms are included by explicit finite difference operators in a fully unsplit way, maintaining second order accuracy. The divergence-free condition of magnetic fields is exactly ensured at all times by a flux-interpolated constrained transport scheme. The super time stepping method is used to accelerate the timestep in high resolution calculations and/or in strong ambipolar diffusion. We perform two test problems, the steady-state oblique C-type shocks and the decay of Alfv\'en waves, confirming the accuracy and robustness of our numerical approach. Results from the simulations of the compressible MHD turbulence with ambipolar diffusion show the flexibility of our method as well as its ability to follow complex MHD flows in the presence of ambipolar diffusion. These simulations show that the dissipation rate of MHD turbulence is strongly affected by the strength of ambipolar diffusion.Comment: 25 pages, 5 figures, ApJS accepte

    Graphene Oxidation: Thickness Dependent Etching and Strong Chemical Doping

    Full text link
    Patterned graphene shows substantial potential for applications in future molecular-scale integrated electronics. Environmental effects are a critical issue in a single layer material where every atom is on the surface. Especially intriguing is the variety of rich chemical interactions shown by molecular oxygen with aromatic molecules. We find that O2 etching kinetics vary strongly with the number of graphene layers in the sample. Three-layer-thick samples show etching similar to bulk natural graphite. Single-layer graphene reacts faster and shows random etch pits in contrast to natural graphite where nucleation occurs at point defects. In addition, basal plane oxygen species strongly hole dope graphene, with a Fermi level shift of ~0.5 eV. These oxygen species partially desorb in an Ar gas flow, or under irradiation by far UV light, and readsorb again in an O2 atmosphere at room temperature. This strongly doped graphene is very different than graphene oxide made by mineral acid attack.Comment: 15 pages, 5 figure

    Piezoelectric Materials for Medical Applications

    Get PDF
    This chapter describes the history and development strategy of piezoelectric materials for medical applications. It covers the piezoelectric properties of materials found inside the human body including blood vessels, skin, and bones as well as how the piezoelectricity innate in those materials aids in disease treatment. It also covers piezoelectric materials and their use in medical implants by explaining how piezoelectric materials can be used as sensors and can emulate natural materials. Finally, the possibility of using piezoelectric materials to design medical equipment and how current models can be improved by further research is explored. This review is intended to provide greater understanding of how important piezoelectricity is to the medical industry by describing the challenges and opportunities regarding its future development
    • …
    corecore