10,982 research outputs found

    Empirical Comparisons of Virtual Environment Displays

    Get PDF
    There are many different visual display devices used in virtual environment (VE) systems. These displays vary along many dimensions, such as resolution, field of view, level of immersion, quality of stereo, and so on. In general, no guidelines exist to choose an appropriate display for a particular VE application. Our goal in this work is to develop such guidelines on the basis of empirical results. We present two initial experiments comparing head-mounted displays with a workbench display and a foursided spatially immersive display. The results indicate that the physical characteristics of the displays, users' prior experiences, and even the order in which the displays are presented can have significant effects on performance

    Topological delocalization of two-dimensional massless Dirac fermions

    Full text link
    The beta function of a two-dimensional massless Dirac Hamiltonian subject to a random scalar potential, which e.g., underlies the theoretical description of graphene, is computed numerically. Although it belongs to, from a symmetry standpoint, the two-dimensional symplectic class, the beta function monotonically increases with decreasing gg. We also provide an argument based on the spectral flows under twisting boundary conditions, which shows that none of states of the massless Dirac Hamiltonian can be localized.Comment: 4 pages, 2 figure

    Effects of cooling on the propagation of magnetized jets

    Get PDF
    We present multidimensional simulations of magnetized radiative jets appropriate to young stellar objects (YSOs). Magnetized jets subject to collisionally excited radiative losses have not, as yet, received extensive scrutiny. The purpose of this Letter is to articulate the propagation dynamics of radiative MHD jets in the context of the extensive jet literature. Most importantly, we look for morphological and kinematic diagnostics that may distinguish hydrodynamic protostellar jets from their magnetically dominated cousins. Our simulations are axisymmetric (2.5 dimensions). A toroidal (B-phi) field geometry is used. Our models have high sonic Mach numbers (M-f approximate to 10) but lower fast-mode Mach number (M-f approximate to 5). This is approximately the case for jets formed via disk-wind or X-wind models-currently the consensus choice for launching and collimating YSO jets. Time-dependent radiative losses are included via a coronal cooling curve. Our results demonstrate that the morphology and propagation characteristics of strongly magnetized radiative jets can differ significantly from jets with weak fields. In particular, the formation of nose cones via postshock hoop stresses leads to narrow bow shocks and enhanced bow shock speeds. In addition, the hoop stresses produce strong shocks in the jet beam, which contrasts with the relatively unperturbed beam in radiative hydrodynamic jets. Our simulations show that pinch modes produced by magnetic tension can strongly affect magnetized protostellar jets. These differences may be useful in observational studies designed to distinguish between competing jet collimation scenariosopen515

    The Propagation of Magneto-Centrifugally Launched Jets: I

    Get PDF
    We present simulations of the propagation of magnetized jets. This work differs from previous studies in that the cross-sectional distributions of the jets's state variables are derived from analytical models for magneto-centrifugal launching. The source is a magnetized rotator whose properties are specfied as boundary conditions. The jets in these simulations are considerably more complex than the ``top-hat''constant density etc. profiles used in previous work. We find that density and magnetic field stratification (with radius) in the jet leads to new behavior including the separation of an inner jet core from a low density collar. We find this {\it jet within a jet} structure, along with the magnetic stresses, leads to propagation behaviors not observed in previous simulation studies. Our methodology allows us to compare MHD jets from different types of sources whose properties could ultimately be derived from the behavior of the propagating jets.Comment: 42 pages, accepted by the Ap

    Field-driven topological glass transition in a model flux line lattice

    Full text link
    We show that the flux line lattice in a model layered HTSC becomes unstable above a critical magnetic field with respect to a plastic deformation via penetration of pairs of point-like disclination defects. The instability is characterized by the competition between the elastic and the pinning energies and is essentially assisted by softening of the lattice induced by a dimensional crossover of the fluctuations as field increases. We confirm through a computer simulation that this indeed may lead to a phase transition from crystalline order at low fields to a topologically disordered phase at higher fields. We propose that this mechanism provides a model of the low temperature field--driven disordering transition observed in neutron diffraction experiments on Bi2Sr2CaCu2O8{\rm Bi_2Sr_2CaCu_2O_8\, } single crystals.Comment: 11 pages, 4 figures available upon request via snail mail from [email protected]

    Entanglement entropy and the Berry phase in solid states

    Get PDF
    The entanglement entropy (von Neumann entropy) has been used to characterize the complexity of many-body ground states in strongly correlated systems. In this paper, we try to establish a connection between the lower bound of the von Neumann entropy and the Berry phase defined for quantum ground states. As an example, a family of translational invariant lattice free fermion systems with two bands separated by a finite gap is investigated. We argue that, for one dimensional (1D) cases, when the Berry phase (Zak's phase) of the occupied band is equal to π×(oddinteger)\pi \times ({odd integer}) and when the ground state respects a discrete unitary particle-hole symmetry (chiral symmetry), the entanglement entropy in the thermodynamic limit is at least larger than ln2\ln 2 (per boundary), i.e., the entanglement entropy that corresponds to a maximally entangled pair of two qubits. We also discuss this lower bound is related to vanishing of the expectation value of a certain non-local operator which creates a kink in 1D systems.Comment: 11 pages, 4 figures, new references adde

    A Characterization of Topological Insulators: Chern Numbers for a Ground State Multiplet

    Full text link
    We propose to use generic Chern numbers for a characterization of topological insulators. It is suitable for a numerical characterization of low dimensional quantum liquids where strong quantum fluctuations prevent from developing conventional orders. By twisting parameters of boundary conditions, the non-Abelian Chern number are defined for a few low lying states near the ground state in a finite system, which is a ground state multiplet with a possible (topological) degeneracy. We define the system as a topological insulator when energies of the multiplet are well separated from the above. Translational invariant twists up to a unitary equivalence are crutial to pick up only bulk properties without edge states. As a simple example, the setup is applied for a two-dimensional XXZXXZ-spin system with an ising anisotropy where the ground state multiplet is composed of doubly almost degenerate states. It gives a vanishing Chern number due to a symmetry. Also Chern numbers for the generic fractional quantum Hall states are discussed shortly.Comment: 2 figure

    Magnetization Jump in a Model for Flux Lattice Melting at Low Magnetic Fields

    Full text link
    Using a frustrated XY model on a lattice with open boundary conditions, we numerically study the magnetization change near a flux lattice melting transition at low fields. In both two and three dimensions, we find that the melting transition is followed at a higher temperature by the onset of large dissipation associated with the zero-field XY transition. It is characterized by the proliferation of vortex-antivortex pairs (in 2D) or vortex loops (in 3D). At the upper transition, there is a sharp increase in magnetization, in qualitative agreement with recent local Hall probe experiments.Comment: updated figures and texts. new movies available at http://www.physics.ohio-state.edu:80/~ryu/jj.html. Accepted for publication in Physical Review Letter
    corecore