The beta function of a two-dimensional massless Dirac Hamiltonian subject to
a random scalar potential, which e.g., underlies the theoretical description of
graphene, is computed numerically. Although it belongs to, from a symmetry
standpoint, the two-dimensional symplectic class, the beta function
monotonically increases with decreasing g. We also provide an argument based
on the spectral flows under twisting boundary conditions, which shows that none
of states of the massless Dirac Hamiltonian can be localized.Comment: 4 pages, 2 figure