1,458 research outputs found

    Dimensionality and dynamics in the behavior of C. elegans

    Get PDF
    A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here we show that the space of shapes adopted by the nematode C. elegans is surprisingly low dimensional, with just four dimensions accounting for 95% of the shape variance, and we partially reconstruct "equations of motion" for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively "steering" the worm in real time.Comment: 9 pages, 6 figures, minor correction

    Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper.

    Get PDF
    This Review provides an updated approach to the diagnosis of idiopathic pulmonary fibrosis (IPF), based on a systematic search of the medical literature and the expert opinion of members of the Fleischner Society. A checklist is provided for the clinical evaluation of patients with suspected usual interstitial pneumonia (UIP). The role of CT is expanded to permit diagnosis of IPF without surgical lung biopsy in select cases when CT shows a probable UIP pattern. Additional investigations, including surgical lung biopsy, should be considered in patients with either clinical or CT findings that are indeterminate for IPF. A multidisciplinary approach is particularly important when deciding to perform additional diagnostic assessments, integrating biopsy results with clinical and CT features, and establishing a working diagnosis of IPF if lung tissue is not available. A working diagnosis of IPF should be reviewed at regular intervals since the diagnosis might change. Criteria are presented to establish confident and working diagnoses of IPF

    Carbon nanotube/Co3O4 composite for air electrode of lithium-air battery

    Get PDF
    A carbon nanotube [CNT]/Co3O4 composite is introduced as a catalyst for the air electrode of lithium-air [Li/air] batteries. Co3O4 nanoparticles are successfully attached to the sidewall of the CNT by a hydrothermal method. A high discharge capacity and a low overvoltage indicate that the CNT/Co3O4 composite is a very promising catalyst for the air electrode of Li/air batteries

    Magnetic Catalysis and Quantum Hall Ferromagnetism in Weakly Coupled Graphene

    Full text link
    We study the realization in a model of graphene of the phenomenon whereby the tendency of gauge-field mediated interactions to break chiral symmetry spontaneously is greatly enhanced in an external magnetic field. We prove that, in the weak coupling limit, and where the electron-electron interaction satisfies certain mild conditions, the ground state of charge neutral graphene in an external magnetic field is a quantum Hall ferromagnet which spontaneously breaks the emergent U(4) symmetry to U(2)XU(2). We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet order parameter is given exactly by the leading order in perturbation theory. On the other hand, the chiral condensate which is the order parameter for chiral symmetry breaking generically obtains contributions at all orders. We compute the leading correction to the chiral condensate. We argue that the ensuing fermion spectrum resembles that of massive fermions with a vanishing U(4)-valued chemical potential. We discuss the realization of parity and charge conjugation symmetries and argue that, in the context of our model, the charge neutral quantum Hall state in graphene is a bulk insulator, with vanishing longitudinal conductivity due to a charge gap and Hall conductivity vanishing due to a residual discrete particle-hole symmetry.Comment: 35 page

    Modelling informative time points: an evolutionary process approach

    Get PDF
    Real time series sometimes exhibit various types of "irregularities": missing observations, observations collected not regularly over time for practical reasons, observation times driven by the series itself, or outlying observations. However, the vast majority of methods of time series analysis are designed for regular time series only. A particular case of irregularly spaced time series is that in which the sampling procedure over time depends also on the observed values. In such situations, there is stochastic dependence between the process being modelled and the times of the observations. In this work, we propose a model in which the sampling design depends on all past history of the observed processes. Taking into account the natural temporal order underlying available data represented by a time series, then a modelling approach based on evolutionary processes seems a natural choice. We consider maximum likelihood estimation of the model parameters. Numerical studies with simulated and real data sets are performed to illustrate the benefits of this model-based approach.- The authors acknowledge Foundation FCT (FundacAo para a Ciencia e Tecnologia) as members of the research project PTDC/MAT-STA/28243/2017 and Center for Research & Development in Mathematics and Applications of Aveiro University within project UID/MAT/04106/2019

    Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT

    Full text link
    We present holographic descriptions of thermalization in conformal field theories using probe D-branes in AdS X S space-times. We find that the induced metrics on Dp-brane worldvolumes which are rotating in an internal sphere direction have horizons with characteristic Hawking temperatures even if there is no black hole in the bulk AdS. The AdS/CFT correspondence applied to such systems indeed reveals thermal properties such as Brownian motions and AC conductivities in the dual conformal field theories. We also use this framework to holographically analyze time-dependent systems undergoing a quantum quench, where parameters in quantum field theories, such as a mass or a coupling constant, are suddenly changed. We confirm that this leads to thermal behavior by demonstrating the formation of apparent horizons in the induced metric after a certain time.Comment: LaTeX, 47 pages, 14 figures; Typos corrected and references added (v2); minor corrections, references added(v3

    Pharmacological antagonism of interleukin-8 receptor CXCR2 inhibits inflammatory reactivity and is neuroprotective in an animal model of Alzheimer’s disease

    Full text link
    BACKGROUND: The chemokine interleukin-8 (IL-8) and its receptor CXCR2 contribute to chemotactic responses in Alzheimer’s disease (AD); however, properties of the ligand and receptor have not been characterized in animal models of disease. The primary aim of our study was to examine effects of pharmacological antagonism of CXCR2 as a strategy to inhibit receptor-mediated inflammatory reactivity and enhance neuronal viability in animals receiving intrahippocampal injection of amyloid-beta (Aβ(1–42)). METHODS: In vivo studies used an animal model of Alzheimer’s disease incorporating injection of full-length Aβ(1–42) into rat hippocampus. Immunohistochemical staining of rat brain was used to measure microgliosis, astrogliosis, neuronal viability, and oxidative stress. Western blot and Reverse Transcription PCR (RT-PCR) were used to determine levels of CXCR2 in animal tissue with the latter also used to determine expression of pro-inflammatory mediators. Immunostaining of human AD and non-demented (ND) tissue was also undertaken. RESULTS: We initially determined that in the human brain, AD relative to ND tissue exhibited marked increases in expression of CXCR2 with cell-specific receptor expression prominent in microglia. In Aβ(1–42)-injected rat brain, CXCR2 and IL-8 showed time-dependent increases in expression, concomitant with enhanced gliosis, relative to controls phosphate-buffered saline (PBS) or reverse peptide Aβ(42–1) injection. Administration of the competitive CXCR2 antagonist SB332235 to peptide-injected rats significantly reduced expression of CXCR2 and microgliosis, with astrogliosis unchanged. Double staining studies demonstrated localization of CXCR2 and microglial immunoreactivity nearby deposits of Aβ(1–42) with SB332235 effective in inhibiting receptor expression and microgliosis. The numbers of neurons in granule cell layer (GCL) were reduced in rats receiving Aβ(1–42), compared with PBS, with administration of SB332235 to peptide-injected animals conferring neuroprotection. Oxidative stress was indicated in the animal model since both 4-hydroxynonenal (4-HNE) and hydroethidine (HEt) were markedly elevated in Aβ(1–42) vs PBS-injected rat brain and diminished with SB332235 treatment. CONCLUSION: Overall, the findings suggest critical roles for CXCR2-dependent inflammatory responses in an AD animal model with pharmacological modulation of the receptor effective in inhibiting inflammatory reactivity and conferring neuroprotection against oxidative damage

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Higher Derivative Corrections to Holographic Entanglement Entropy for AdS Solitons

    Full text link
    We investigate the behaviors of holographic entanglement entropy for AdS soliton geometries in the presence of higher derivative corrections. We calculate the leading higher derivative corrections for the AdS5 setup in type IIB string and for the AdS4,7 ones in M-theory. We also study the holographic entanglement entropy in Gauss-Bonnet gravity and study how the confinement/deconfinement phase transition observed in AdS solitons is affected by the higher derivative corrections.Comment: 1+25 pages, 12 figures, LaTeX; v2: footnotes and references adde

    Proteomic Analysis of Rat Hypothalamus Revealed the Role of Ubiquitin–Proteasome System in the Genesis of DR or DIO

    Get PDF
    Obesity has become a global epidemic, contributing to the increasing burdens of cardiovascular disease and type 2 diabetes. However, the precise molecular mechanisms of obesity remain poorly elucidated. The hypothalamus plays a major part in regulating energy homeostasis by integrating all kinds of nutritional signals. This study investigated the hypothalamus protein profile in diet-induced obese (DIO) and diet-resistant (DR) rats using two dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF–MS analysis. Twenty-two proteins were identified in the hypothalamus of DIO or DR rats. These include metabolic enzymes, antioxidant proteins, proteasome related proteins, and signaling proteins, some of which are related to AMP-activated protein kinase (AMPK) signaling or mitochondrial respiration. Among these proteins, in comparison with the normal-diet group, Ubiquitin was significantly decreased in DR rats but not changed in DIO rats, while Ubiquitin carboxyl-terminal esterase L1 (UCHL-1) was decreased in DIO rats but not changed in DR rats. The expression level of Ubiquitin and UCHL-1 were further validated using Western blot analysis. Our study reveals that Ubiquitin and UCHL-1 are obesity-related factors in the hypothalamus that may play an important role in the genesis of DR or DIO by interfering with the integrated signaling network that control energy balance and feeding
    corecore