16 research outputs found

    Establishment of particulate matter-induced lung injury model in mouse

    Get PDF
    Background Particulate matter (PM) is one of the principal causes of human respiratory disabilities resulting from air pollution. Animal models have been applied to discover preventive and therapeutic drugs for lung diseases caused by PM. However, the induced severity of lung injury in animal models using PM varies from study to study due to disparities in the preparation of PM, and the route and number of PM administrations. In this study, we established an in vivo model to evaluate PM-induced lung injury in mice. Results PM dispersion was prepared using SRM2975. Reactive oxygen species were increased in MLE 12 cells exposed to this PM dispersion. In vivo studies were conducted in the PM single challenge model, PM multiple challenge model, and PM challenge with ovalbumin-induced asthma using the PM dispersion. No histopathological changes were observed in lung tissues after a single injection of PM, whereas mild to moderate lung inflammation was obtained in the lungs of mice exposed to PM three times. However, fibrotic changes were barely seen, even though transmission electron microscopy (TEM) studies revealed the presence of PM particles in the alveolar macrophages and alveolar capillaries. In the OVA-PM model, peribronchial inflammation and mucous hypersecretion were more severe in the OVA+PM group than the OVA group. Serum IgE levels tended to increase in OVA+PM group than in OVA group. Conclusions In this study, we established a PM-induced lung injury model to examine the lung damage induced by PM. Based on our results, repeated exposures of PM are necessary to induce lung inflammation by PM alone. PM challenge, in the presence of underlying diseases such as asthma, can also be an appropriate model for studying the health effect of PM.This research was supported by Univera Co., Ltd., as one of the CAP projects and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03043708)

    Engineering of the Substrate Pocket of ??-ketoglutaric Semialdehyde Dehydrogenase for Improving the Activity toward 3-hydroxypropanal

    No full text
    3-Hydroxypropionic acid (3-HP) is a key building block for value-added chemicals. A biological route for synthesizing this molecule is two-step enzymatic reactions; dehydration of glycerol to 3-hydroxypropanal (3-HPA) by glycerol dehydratase and then oxidation of 3-HPA to 3-HP by aldehyde dehydrogenase. Here, we report an aldehyde dehydrogenase, an engineered alpha-ketoglutaric semialdehyde dehydrogenase (KGSADH) from Azospirillum brasilense. The variant, named 2C10, was obtained by applying a large KGSADH library to a selection method based on a 3-HP-responsive transcription factor and then a screening method for observing the activities of individual clones. 2C10 exhibited a 4.65-fold higher catalytic activity (k(cat)/K-m: 100 +/- 7.1 s(-1)mM(-1)) toward 3-HPA than the wild-type enzyme. The flask culture of Pseudomonas denitrificans with 2C10 resulted in an approximately 30% increase in 3-HP titer (43.2 mM) compared with that obtained using wild-type KGSADH (33.1 mM). Molecular dynamics simulations suggested that compared to the wild-type enzyme, 2C10 has a less flexible and smaller binding pocket for aldehyde substrates

    Safety evaluation of cricket(Gryllus bimaculatus) extract in Sprague-Dawley rats

    No full text
    Recently, research investment in the improvement of food safety as a food source and specializing of nutritional source of edible insects is being actively conducted. Cricket especially has been attracting considerable interest in entomophagy; however, research on the safety assessment of cricket is limited. This study investigated the effects of cricket ethanol extract when orally administrated in Sprague-Dawley rats. Here, we performed a 4 wk repeated oral dose toxicity test in Sprague-Dawley rats following the Organization for Economic Cooperation and Development test guidelines 407 under Good Laboratory Practice regulation. Rats were randomly allocated 4 groups: vehicle control, 250, 500, 1,000 mg/kg test groups and administrated based on body weight for 28 d. The animals were observed for mortalities and clinical signs, body weight changes, food and water consumption. At the end of treatment period, blood and urine were collected and analyzed. Subsequently, the animals were sacrificed and subjected to gross pathological examination and organ weight measurement. The organs were preserved for histopathological examination. The results showed that there were no systemic toxicological effects related with the cricket ethanol extract in the 4 wk oral repeated dose toxicity study. It is considered that NOAEL of cricket ethanol extract is greater than 1,000 mg/kg/d and there was no target organ detected

    Pharmacokinetics and toxicity evaluation following oral exposure to bisphenol F

    No full text
    Bisphenol F is a substitute material for bisphenol A and is widely used in household products as a raw material for polycarbonate resin, epoxy resin, and plastic reinforcement. It is known to be mainly used in food containers, thermal paper for receipts, and coatings for water pipes. In some countries, bisphenol F has been detected in drinking water and human urine samples. However, due to the lack of safety evaluation data on bisphenol F, it is difficult to establish appropriate guidelines for the proper use of the substance, and social anxiety is increasing accordingly. This study investigated the use, exposure route, and distribution flow of bisphenol F, a household chemical. To determine the no-observed-adverse-effect level (NOAEL) and target organ of bisphenol F after exposure, a single-dose oral toxicity, dose-range finding (28 day oral), repeated dose toxicity (90 day oral), and genotoxicity (reverse mutation, chromosomal abnormality, in vivo micronucleus test) tests were performed. The pharmacokinetic profile was also obtained. The test results are as follows: in the pharmacokinetic study, it was confirmed that single oral exposure to BPF resulted in systemic exposure; in single oral dose toxicity test, the approximate lethal dose was found to be 4000 mg/kg and confusion and convulsion was shown in the test animals; NOAEL was determined to be 2 mg/kg/day for male and 5 mg/kg/day for female, and the no-observed-effect level (NOEL) was determined to be 2 mg/kg/day for males and 1 mg/kg/day for females, and the target organ was the small intestine; genotoxicity tests confirmed that BPF does not induce genotoxicity.N

    Catalytic Conversion of Hexagonal Boron Nitride to Graphene for In-Plane Heterostructures

    No full text
    Heterostructures of hexagonal boron nitride (h-BN) and graphene have attracted a great deal of attention for potential applications in 2D materials. Although several methods have been developed to produce this material through the partial substitution reaction of graphene, the reverse reaction has not been reported. Though the endothermic nature of this reaction might account for the difficulty and previous absence of such a process, we report herein a new chemical route in which the Pt substrate plays a catalytic role. We propose that this reaction proceeds through h-BN hydrogenation; subsequent graphene growth quickly replaces the initially etched region. Importantly, this conversion reaction enables the controlled formation of patterned in-plane graphene/h-BN heterostructures, without needing the commonly employed protecting mask, simply by using a patterned Pt substrateclose0

    Solanum melongena L. Extract Protects Retinal Pigment Epithelial Cells from Blue Light-Induced Phototoxicity in In Vitro and In Vivo Models

    No full text
    N-retinylidene-N-retinylethanolamine (A2E) accumulation in the retina is a prominent marker of retinal degenerative diseases. Blue light exposure is considered as an important factor contributing to dry age-related macular degeneration (AMD). Eggplant and its constituents have been shown to confer health benefits, but their therapeutic effects on dry AMD remain incompletely understood. In this study, we showed that an extract of Solanum melongena L. (EPX) protected A2E-laden ARPE-19 cells against blue light-induced cell death via attenuating reactive oxygen species. Transcriptomic analysis demonstrated that blue light modulated the expression of genes associated with stress response, inflammation, and cell death, and EPX suppressed the inflammatory pathway induced by blue light in A2E-laden ARPE-19 cells by inhibiting the nuclear translocation of nuclear factor kappa B and transcription of pro-inflammatory genes (CXCL8 and IL1B). The degradation of intracellular A2E was considered the major mechanism underlying the protective effect of EPX. Moreover, chlorogenic acid isolated from EPX exerted protective effects against blue light-induced cell damage in A2E-laden ARPE-19 cells. In vivo, EPX administration in BALB/c mice reduced the fundus damage and degeneration of the retinal layer in a blue light-induced retinal damage model. Collectively, our findings suggest the potential role of Solanum melongena L. extract for AMD treatment

    <i>Solanum melongena</i> L. Extract Protects Retinal Pigment Epithelial Cells from Blue Light-Induced Phototoxicity in In Vitro and In Vivo Models

    No full text
    N-retinylidene-N-retinylethanolamine (A2E) accumulation in the retina is a prominent marker of retinal degenerative diseases. Blue light exposure is considered as an important factor contributing to dry age-related macular degeneration (AMD). Eggplant and its constituents have been shown to confer health benefits, but their therapeutic effects on dry AMD remain incompletely understood. In this study, we showed that an extract of Solanum melongena L. (EPX) protected A2E-laden ARPE-19 cells against blue light-induced cell death via attenuating reactive oxygen species. Transcriptomic analysis demonstrated that blue light modulated the expression of genes associated with stress response, inflammation, and cell death, and EPX suppressed the inflammatory pathway induced by blue light in A2E-laden ARPE-19 cells by inhibiting the nuclear translocation of nuclear factor kappa B and transcription of pro-inflammatory genes (CXCL8 and IL1B). The degradation of intracellular A2E was considered the major mechanism underlying the protective effect of EPX. Moreover, chlorogenic acid isolated from EPX exerted protective effects against blue light-induced cell damage in A2E-laden ARPE-19 cells. In vivo, EPX administration in BALB/c mice reduced the fundus damage and degeneration of the retinal layer in a blue light-induced retinal damage model. Collectively, our findings suggest the potential role of Solanum melongena L. extract for AMD treatment

    Dimerization of β2-adrenergic receptor is responsible for the constitutive activity subjected to inverse agonism

    No full text
    Dimerization of beta 2-adrenergic receptor (β2-AR) has been observed across various physiologies. However, the function of dimeric β2-AR is still elusive. Here, we revealed that dimerization of β2-AR is responsible for the constitutive activity of β2-AR generating inverse agonism. Using a co-immunoimmobilization assay, we found that transient β2-AR dimers exist in a resting state, and the dimer was disrupted by the inverse agonists. A Gαs preferentially interacts with dimeric β2-AR, but not monomeric β2-AR, in a resting state, resulting in the production of a resting cAMP level. The formation of β2-AR dimers requires cholesterol on the plasma membrane. The cholesterol did not interfere with the agonist-induced activation of monomeric β2-AR, unlike the inverse agonists, implying that the cholesterol is a specific factor regulating the dimerization of β2-AR. Our model not only shows the function of dimeric β2-AR but also provides a molecular insight into the mechanism of the inverse agonism of β2-AR.11Nsciescopu

    Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures

    No full text
    Interlayer excitons were observed at the heterojunctions in van der Waals heterostructures (vdW HSs). However, it is not known how the excitonic phenomena are affected by the stacking order. Here, we report twist-angle-dependent interlayer excitons in MoSe2/WSe2 vdW HSs based on photoluminescence (PL) and vdW-corrected density functional theory calculations. The PL intensity of the interlayer excitons depends primarily on the twist angle: It is enhanced at coherently stacked angles of 0 degrees and 60 degrees (owing to strong interlayer coupling) but disappears at incoherent intermediate angles. The calculations confirm twist-angle-dependent interlayer coupling: The states at the edges of the valence band exhibit a long tail that stretches over the other layer for coherently stacked angles; however, the states are largely confined in the respective layers for intermediate angles. This interlayer hybridization of the band edge states also correlates with the interlayer separation between MoSe2 and WSe2 layers. Furthermore, the interlayer coupling becomes insignificant, irrespective of twist angles, by the incorporation of a hexagonal boron nitride monolayer between MoSe2 and WSe2

    Oral toxicity study and skin sensitization test of a cricket

    No full text
    Crickets have been attracting considerable interest in the field of nutrition and toxicology due to the global exhaustion of food resulting from a growing population. The cricket is normally eaten in several countries after roasting, similar to the grasshopper; however, safety evaluation data on cricket powder is limited. Here, we performed general toxicity studies of cricket powder including a single, 2-week repeated dose range evaluation test, a 13-week repeated oral dose toxicity test in Sprague-Dawley rats, a single oral dose toxicity test in Beagle dogs, and a skin sensitization test in guinea pigs following the Organization for Economic Cooperation and Development test guidelines 406 and 408 in addition to Good Laboratory Practice. To investigate the NOAEL and target organs of cricket powder, Sprague-Dawley rats were allocated to 4 groups: vehicle control, 1,250 mg/kg, 2,500 mg/kg, 5,000 mg/kg dose test groups and cricket powder was administered over 13 weeks after single dose and dose range finding studies in rats based on the results of the single oral administration toxicity study in rats and Beagle dogs. The results of the study showed that the NOAEL of cricket powder was over 5,000 mg/kg for both sexes of rats without adverse effects in a 13-week repeated oral toxicity study and there was no skin hypersensitivity reaction. Therefore, our results reveal that crickets can be widely used as a new substitute food or nutrient resource
    corecore