16 research outputs found
Inherited defects of piRNA biogenesis cause transposon de-repression, impaired spermatogenesis, and human male infertility
piRNAs are crucial for transposon silencing, germ cell maturation, and fertility in male mice. Here, we report on the genetic landscape of piRNA dysfunction in humans and present 39 infertile men carrying biallelic variants in 14 different piRNA pathway genes, including PIWIL1, GTSF1, GPAT2, MAEL, TDRD1, and DDX4. In some affected men, the testicular phenotypes differ from those of the respective knockout mice and range from complete germ cell loss to the production of a few morphologically abnormal sperm. A reduced number of pachytene piRNAs was detected in the testicular tissue of variant carriers, demonstrating impaired piRNA biogenesis. Furthermore, LINE1 expression in spermatogonia links impaired piRNA biogenesis to transposon de-silencing and serves to classify variants as functionally relevant. These results establish the disrupted piRNA pathway as a major cause of human spermatogenic failure and provide insights into transposon silencing in human male germ cells
Unique Interplay between Molecular miR-181b/d Biomarkers and Health Related Quality of Life Score in the Predictive Glioma Models
In the last decade, an increasing amount of research has been conducted analyzing microRNA expression changes in glioma tissue and its expressed exosomes, but there is still sparse information on microRNAs or other biomarkers and their association with patients’ functional/psychological outcomes. In this study, we performed a combinational analysis measuring miR-181b and miR-181d expression levels by quantitative polymerase chain reaction (qPCR), evaluating isocitrate dehydrogenase 1 (IDH1) single nucleotide polymorphism (SNP), and O-6-methylguanine methyltransferase (MGMT) promoter methylation status in 92 post-surgical glioma samples and 64 serum exosomes, including patients’ quality of life evaluation applying European Organization for Research and Treatment of Cancer (EORTC) questionnaire for cancer patients (QLQ-30), EORTC the Brain Cancer-Specific Quality of Life Questionnaire (QLQ-BN20), and the Karnofsky performance status (KPS). The tumoral expression of miR-181b was lower in grade III and glioblastoma, compared to grade II glioma patients (p < 0.05). Additionally, for the first time, we demonstrated the association between miR-181 expression levels and patients’ quality of life. A positive correlation was observed between tumoral miR-181d levels and glioma patients’ functional parameters (p < 0.05), whereas increased exosomal miR-181b levels indicated a worse functional outcome (p < 0.05). Moreover, elevated miR-181b exosomal expression can indicate a significantly shorter post-surgical survival time for glioblastoma multiforme (GBM) patients. In addition, both tumoral and exosomal miR-181 expression levels were related to patients’ functioning and tumor-related symptoms. Our study adds to previous findings by demonstrating the unique interplay between molecular miR-181b/d biomarkers and health related quality of life (HRQOL) score as both variables remained significant in the predictive glioma models
Semaphorin Sema3C molecular mechanisms involved in regulation of gliomagenesis
The function of Sema3 proteins is partially regulated by protease family of furins, which recognize RxRR amino acid sequence in Sema, PSI and basic domains of semaphorins. In order to establish the importance of furin cleavage to Sema3C function in angiogenesis, two recombinant Sema3C variants were synthesized and purified: one of the proteins (termed SCL) was constructed to mimic the Sema3C basic domain, which is cleaved at the hypothetical furin recognition site 742RNRR745, whereas the other recombinant protein represented the basic domain of Sema3C in a non-cleaved state (termed SWT). Purified recombinant SCL and SWT proteins were used in in vitro angiogenesis system to determine their impact on endothelial HUVEC cell ability to form microcapillary structures. Results of this experiment revealed significant difference between SCL and SWT in their effect on microcapillary network structure, thus confirming the hypothesis that furin cleavage at 742RNRR745 Sema3C basic domain is crucial to its function. In order to fully understand mechanisms of Sema3C function, a glioblastoma U87 cell line was modified to have a combined gene expression system “Flp-In” and “T-REx”. Newly generated cell line, termed U87frt/tet, will be of great use for future studies as an efficient tool for quick generation of multiple stable glioblastoma cell lines each encoding different types of Sema3C variant
The Role of CASC2 and miR-21 Interplay in Glioma Malignancy and Patient Outcome
Recently long non-coding RNAs (lncRNAs) were highlighted for their regulatory role in tumor biology. The novel human lncRNA cancer susceptibility candidate 2 (CASC2) has been characterized as a potential tumor suppressor in several tumor types. However, the roles of CASC2 and its interplay with miR-21 in different malignancy grade patient gliomas remain unexplored. Here we screened 99 different malignancy grade astrocytomas for CASC2, and miR-21 gene expression by real-time quantitative polymerase chain reaction (RT-qPCR) in isocitrate dehydrogenase 1 (IDH1) and O-6-methylguanine methyltransferase (MGMT) assessed gliomas. CASC2 expression was significantly downregulated in glioblastomas (p = 0.0003). Gliomas with low CASC2 expression exhibited a high level of miR-21, which was highly associated with the higher glioma grade (p = 0.0001), IDH1 wild type gliomas (p < 0.0001), and poor patient survival (p < 0.001). Taken together, these observations suggest that CASC2 acts as a tumor suppressor and potentially as a competing endogenous RNA (ceRNA) for miR-21, plays important role in IDH1 wild type glioma pathogenesis and patients' outcomes
Association of miR-34a expression with quality of life of glioblastoma patients: a prospective study
MiR-34a acts as tumor-suppressor by targeting many oncogenes related to proliferation, apoptosis, and invasion of gliomas. We studied the relationships between health-related quality of life (HRQOL), depression, and miR-34a expression status in patients with newly diagnosed glioblastoma (GBM). A comprehensive HRQOL assessment was completed by 38 patients with glioblastoma prior to surgical resection and included the European Organization for Research and Treatment of Cancer (EORTC) questionnaire for cancer patients (QLQ-C30) and the Brain Cancer-Specific Quality of Life Questionnaire (QLQ-BN20), the Patient Health Questionnaire-9 (PHQ-9), the Karnofsky performance index (KPS), and The Glasgow Outcome Scale (GOS). The miR-34a expression in glioblastoma tissue was measured using quantitative reverse transcription PCR. Our findings show that lower miR-34a expression is significantly associated with higher tumor volume, worse physical functioning, lower KPS, and greater depressive symptom severity of GBM patients. Moreover, analysis reveals that miR-34a effects might be gender specific, as stronger relationships between miR-34a and patient functioning measures were observed in males when compared to females. Despite the fact that, due to small sample size, our results should be considered as preliminary, our study suggests that miR-34a is associated with tumor burden and can be important for health-related quality of life, functional status, and mood symptoms of glioblastoma patients
Unique Interplay Between Molecular miR-181b/d Biomarkers and Health Related Quality of Life Score in the Predictive Glioma Models
In the last decade, an increasing amount of research has been conducted analyzing microRNA expression changes in glioma tissue and its expressed exosomes, but there is still sparse information on microRNAs or other biomarkers and their association with patients' functional/psychological outcomes. In this study, we performed a combinational analysis measuring miR-181b and miR-181d expression levels by quantitative polymerase chain reaction (qPCR), evaluating isocitrate dehydrogenase 1 (IDH1) single nucleotide polymorphism (SNP), and O-6-methylguanine methyltransferase (MGMT) promoter methylation status in 92 post-surgical glioma samples and 64 serum exosomes, including patients' quality of life evaluation applying European Organization for Research and Treatment of Cancer (EORTC) questionnaire for cancer patients (QLQ-30), EORTC the Brain Cancer-Specific Quality of Life Questionnaire (QLQ-BN20), and the Karnofsky performance status (KPS). The tumoral expression of miR-181b was lower in grade III and glioblastoma, compared to grade II glioma patients (p < 0.05). Additionally, for the first time, we demonstrated the association between miR-181 expression levels and patients' quality of life. A positive correlation was observed between tumoral miR-181d levels and glioma patients' functional parameters (p < 0.05), whereas increased exosomal miR-181b levels indicated a worse functional outcome (p < 0.05). Moreover, elevated miR-181b exosomal expression can indicate a significantly shorter post-surgical survival time for glioblastoma multiforme (GBM) patients. In addition, both tumoral and exosomal miR-181 expression levels were related to patients' functioning and tumor-related symptoms. Our study adds to previous findings by demonstrating the unique interplay between molecular miR-181b/d biomarkers and health related quality of life (HRQOL) score as both variables remained significant in the predictive glioma models
Association of miR-34a Expression with Quality of Life of Glioblastoma Patients: A Prospective Study
Identification and comparison of m6A modifications in glioblastoma non-coding RNAs with MeRIP-seq and Nanopore dRNA-seq
The most prominent RNA modification – N6-methyladenosine (m6A) – affects gene regulation and cancer progression. The extent and effect of m6A on long non-coding RNAs (lncRNAs) is, however, still not clear. The most established method for m6A detection is methylated RNA immunoprecipitation and sequencing (MeRIP-seq). However, Oxford Nanopore Technologies recently developed direct RNA-seq (dRNA-seq) method, allowing m6A identification at higher resolution and in its native form. We performed whole transcriptome sequencing of the glioblastoma cell line U87-MG with both MeRIP-seq and dRNA-seq. For MeRIP-seq, m6A peaks were identified using nf-core/chipseq, and for dRNA-seq – EpiNano pipeline. MeRIP-seq analysis revealed 5086 lncRNAs transcripts, while dRNA-seq identified 336 lncRNAs transcripts from which 556 and 198 were found to be m6A modified, respectively. While 24 lncRNAs with m6A overlapped between two methods. Gliovis database analysis revealed that the expression of the major part of identified overlapping lncRNAs was associated with glioma grade or patient survival prognosis. We found that the frequency of m6A occurrence in lncRNAs varied more than 9-fold throughout the provided list of 24 modified lncRNAs. The highest m6A frequency was detected in MIR1915HG, THAP9-AS1, MALAT1, NORAD1, and NEAT1 (49–88nt), while MIR99AHG, SNHG3, LOXL1-AS1, ILF3-DT showed the lowest m6A frequency (445–261nt). Taken together, (1) we provide a high accuracy list of 24 m6A modified lncRNAs of U87-MG cells; (2) we conclude that MeRIP-seq is more suitable for an initial m6A screening study, due to its higher lncRNA coverage, whereas dRNA-seq is most useful when more in-depth analysis of m6A quantity and precise location is of interest. Abbreviations: (dRNA-seq) direct RNA-seq, (GBM) glioblastoma, (LGG) low-grade glioma, (lncRNAs) long non-coding RNAs, (m6A) N6-methyladenosine, (MeRIP-seq) methylated RNA immunoprecipitation and sequencing, (ncRNA) non-coding RNA, (ONT) Oxford Nanopore Technologi; Lietuvos Mokslo Taryba</p
Small RNAs in seminal plasma as novel biomarkers for germ cell tumors
Circulating miRNAs secreted by testicular germ cell tumors (TGCT) show great potential as novel non-invasive biomarkers for diagnosis of TGCT. Seminal plasma (SP) represents a biofluid closer to the primary site. Here, we investigate whether small RNAs in SP can be used to diagnose men with TGCTs or the precursor lesions, germ cell neoplasia in situ (GCNIS). Small RNAs isolated from SP from men with TGCTs (n = 18), GCNIS-only (n = 5), and controls (n = 25) were sequenced. SP from men with TGCT/GCNIS (n = 37) and controls (n = 22) were used for validation by RT-qPCR. In general, piRNAs were found at lower levels in SP from men with TGCTs. Ten small RNAs were found at significantly (q-value < 0.05) different levels in SP from men with TGCT/GCNIS than controls. Random forests classification identified sets of small RNAs that could detect either TGCT/GCNIS or GCNIS-only with an area under the curve of 0.98 and 1 in ROC analyses, respectively. RT-qPCR validated hsa-miR-6782-5p to be present at 2.3-fold lower levels (p = 0.02) in the SP from men with TGCTs compared with controls. Small RNAs in SP show potential as novel biomarkers for diagnosing men with TGCT/GCNIS but validation in larger cohorts is needed