91 research outputs found

    Mechanical stretch induced transcriptomic profiles in cardiac myocytes

    Get PDF
    Mechanical forces are able to activate hypertrophic growth of cardiomyocytes in the overloaded myocardium. However, the transcriptional profiles triggered by mechanical stretch in cardiac myocytes are not fully understood. Here, we performed the first genome-wide time series study of gene expression changes in stretched cultured neonatal rat ventricular myocytes (NRVM)s, resulting in 205, 579, 737, 621, and 1542 differentially expressed (> 2-fold, P < 0.05) genes in response to 1, 4, 12, 24, and 48 hours of cyclic mechanical stretch. We used Ingenuity Pathway Analysis to predict functional pathways and upstream regulators of differentially expressed genes in order to identify regulatory networks that may lead to mechanical stretch induced hypertrophic growth of cardiomyocytes. We also performed micro (miRNA) expression profiling of stretched NRVMs, and identified that a total of 8 and 87 miRNAs were significantly (P < 0.05) altered by 1-12 and 24-48 hours of mechanical stretch, respectively. Finally, through integration of miRNA and mRNA data, we predicted the miRNAs that regulate mRNAs potentially leading to the hypertrophic growth induced by mechanical stretch. These analyses predicted nuclear factor-like 2 (Nrf2) and interferon regulatory transcription factors as well as the let-7 family of miRNAs as playing roles in the regulation of stretch-regulated genes in cardiomyocytes.Peer reviewe

    Targeting vasoactive peptides for managing calcific aortic valve disease

    Get PDF
    Calcific aortic valve disease (CAVD) represents a spectrum of disease spanning from milder degrees of calcification of valve leaflets, i.e., aortic sclerosis, to severe calcification i.e., aortic stenosis (AS) with hemodynamic instability. The prevalence of CAVD is increasing rapidly due to the aging of the population, being up to 2.8% among patients over 75 years of age. Even without significant aortic valve stenosis, aortic sclerosis is associated with a 50% increased risk of myocardial infarction and death from cardiovascular causes. To date, there is no pharmacological treatment available to reverse or hinder the progression of CAVD. So far, the cholesterol-lowering therapies (statins) and renin-angiotensin system (RAS) blocking drugs have been the major pharmacological agents investigated for treatment of CAVD. Especially angiotensin receptor blockers (ARB)s and angiotensin convertase enzyme inhibitors (ACEI)s, have been under active investigation in clinical trials, but have proven to be unsuccessful in slowing the progression of CAVD. Several studies have suggested that other vasoactive hormones, including endothelin and apelin systems are also associated with development of AS. In the present review, we discuss the role of vasoactive factors in the pathogenesis of CAVD as novel pharmacological targets for the treatment of aortic valve calcification.Peer reviewe

    Phosphorylation of GATA4 at serine105 is required for left ventricular remodelling process in angiotensin II–induced hypertension in rats

    Get PDF
    Abstract In this study, we investigated whether local intramyocardial GATA4 overexpression affects the left ventricular (LV) remodelling process and the importance of phosphorylation at serine-105 (S105) for the actions of GATA4 in an angiotensin II (AngII)-induced hypertension rat model. Adenoviral constructs overexpressing wild type GATA4 or GATA4 mutated at S105 were delivered into the anterior LV free wall. AngII (33.3 µg x kg-1 x h-1) was administered via subcutaneously implanted minipumps. Cardiac function and structure were examined by echocardiography, followed by histological immunostainings of LV sections and gene expression measurements by RT-qPCR. The effects of GATA4 on cultured neonatal rat ventricular fibroblasts were evaluated. In AngII?induced hypertension, GATA4 overexpression repressed fibrotic gene expression, reversed the hypertrophic adult-to-foetal isoform switch of myofibrillar genes and prevented apoptosis, whereas histological fibrosis was not affected. Overexpression of GATA4 mutated at S105 resulted in LV chamber dilatation, cardiac dysfunction and had minor effects on expression of myocardial remodelling genes. Fibrotic gene expression in cardiac fibroblasts was differently affected by overexpression of wild type or mutated GATA4. Our results indicate that GATA4 reduces AngII-induced responses by interfering with pro-fibrotic and hypertrophic gene expressions. GATA4 actions on LV remodelling and fibroblasts are dependent on phosphorylation site S105.Peer reviewe

    SDF1 gradient associates with the distribution of c-Kit+ cardiac cells in the heart

    Get PDF
    Identification of the adult cardiac stem cells (CSCs) has offered new therapeutic possibilities for treating ischemic myocardium. CSCs positive for the cell surface antigen c-Kit are known as the primary source for cardiac regeneration. Accumulating evidence shows that chemokines play important roles in stem cell homing. Here we investigated molecular targets to be utilized in modulating the mobility of endogenous CSCs. In a four week follow-up after experimental acute myocardial infarction (AMI) with ligation of the left anterior descending (LAD) coronary artery of Sprague-Dawley rats c-Kit+ CSCs redistributed in the heart. The number of c-Kit+ CSCs in the atrial c-Kit niche was diminished, whereas increased amount was observed in the left ventricle and apex. This was associated with increased expression of stromal cell-derived factor 1 alpha (SDF1 alpha), and a significant positive correlation was found between c-Kit+ CSCs and SDF1a expression in the heart. Moreover, the migratory capacity of isolated c-Kit+ CSCs was induced by SDF1 treatment in vitro. We conclude that upregulation of SDF1a after AMI associates with increased expression of endogenous c-Kit+ CSCs in the injury area, and show induced migration of c-Kit+ cells by SDF1.Peer reviewe

    Transcription factor PEX1 modulates extracellular matrix turnover through regulation of MMP-9 expression

    Get PDF
    The phenylephrine-induced complex-1 (PEX1) transcription factor, also known as zinc-finger protein 260 (Zfp260), is an effector of endothelin-1 and alpha(1)-adrenergic signaling in cardiac hypertrophy. However, the role of PEX1 in transcriptional regulation of myocardial remodeling remains largely unknown. In the present study, we used PEX1 gain- and loss-of-function to examine the effects of PEX1 on left ventricular remodeling. Adenoviral constructs expressing PEX1, antisense PEX1, or LacZ were delivered by local injection into the anterior wall of the left ventricle in Sprague-Dawley rats. PEX1 overexpression led to induction of hypertrophic gene program and increased fibrosis. In agreement with this, the expression of genes involved in the fibrotic process, such as collagens I and III, matrix metalloproteinases (MMPs), fibronectin-1, transforming growth factor beta-1 and connective tissue growth factor, were significantly up-regulated following PEX1 overexpression, whereas silencing of PEX1 significantly inhibited the expression of pro-fibrotic genes and increased left ventricular ejection fraction and fractional shortening. In vitro luciferase reporter assays showed that PEX1 regulates the expression of MMP-9 by activating promoter. Furthermore, PEX1 gain- and loss-of-function experiments in rat neonatal cardiac fibroblasts and myocytes revealed that MMP-9 gene expression was affected by PEX1 predominantly in fibroblasts. Our results indicate that PEX1 is involved in regulating cardiac fibrosis and extracellular matrix turnover, particularly fibroblasts being responsible for the fibrosis-associated changes in gene expression. Furthermore, PEX1 activation of the MMP-9 promoter triggers the pro-fibrotic response directed by PEX1.Peer reviewe

    Circulating protein biomarkers predict incident hypertensive heart failure independently of N-terminal pro-B-type natriuretic peptide levels

    Get PDF
    Aims Hypertension is the leading cause for the development of heart failure (HF). Here, we aimed to identify cardiomyocyte stretch-induced circulating biomarkers for predicting hypertension-associated HF. Methods and results Circulating levels of 149 proteins were measured by proximity extension assay at baseline examination in 4742 individuals from the Malmo Diet and Cancer study. Protein levels were compared with stretch-activated gene expression changes in cultured neonatal rat ventricular myocytes (NRVMs) in response to 1-48 h of mechanical stretch. We also studied the association between protein levels and hypertension and HF incidence using respectively binary logistic and Cox regressions. Levels of 35 proteins were differentially expressed after Bonferroni correction in incident HF vs. control (P <3.4E-4). Growth differentiation factor-15 (GDF-15), interleukin-6 (IL-6), IL-1 receptor type 1, and urokinase plasminogen activator surface receptor had corresponding mRNA levels up-regulated by stretch in NRVMs at all time points (P <0.05). These four proteins were individually associated with increased risk of HF after age and sex adjustment [hazard ratio (HR) per standard deviation: 1.19 Conclusions Cardiomyocyte mRNA levels of GDF-15 and IL-6 are consistently up-regulated by stretch, and their circulating protein levels predict HF in hypertensive subjects independently of NT-proBNP during long-term follow-up. Our results encourage further studies on lower blood pressure goals in hypertensive subjects with high GDF-15 and IL-6, and interventions targeted at stretch-induced cardiomyocyte expressed biomarkers.Peer reviewe

    Characterization of Molecular Forms of N-Terminal B-Type Natriuretic Peptide In Vitro

    Get PDF
    BACKGROUND: The heterogeneity of circulating peptides may influence the interpretation of results from N-terminal profragment of BNP (NT-proBNP) assays. Our objective was to characterize the heterogeneity for better usability of the assays

    TSC-22 up-regulates collagen 3a1 gene expression in the rat heart

    Get PDF
    Background: The transforming growth factor (TGF)-beta is one of the key mediators in cardiac remodelling occurring after myocardial infarction (MI) and in hypertensive heart disease. The TGF-beta-stimulated clone 22 (TSC-22) is a leucine zipper protein expressed in many tissues and possessing various transcription-modulating activities. However, its function in the heart remains unknown. Methods: The aim of the present study was to characterize cardiac TSC-22 expression in vivo in cardiac remodelling and in myocytes in vitro. In addition, we used TSC-22 gene transfer in order to examine the effects of TSC-22 on cardiac gene expression and function. Results: We found that TSC-22 is rapidly up-regulated by multiple hypertrophic stimuli, and in post-MI remodelling both TSC-22 mRNA and protein levels were up-regulated (4.1-fold, P <0.001 and 3.0-fold, P <0.05, respectively) already on day 1. We observed that both losartan and metoprolol treatments reduced left ventricular TSC-22 gene expression. Finally, TSC-22 overexpression by local intramyocardial adenovirus-mediated gene delivery showed that TSC-22 appears to have a role in regulating collagen type III alpha 1 gene expression in the heart. Conclusions: These results demonstrate that TSC-22 expression is induced in response to cardiac overload. Moreover, our data suggests that, by regulating collagen expression in the heart in vivo, TSC-22 could be a potential target for fibrosis-preventing therapies.Peer reviewe

    Waterless Dyeing and In Vitro Toxicological Properties of Biocolorants from Cortinarius sanguineus

    Get PDF
    As a part of an ongoing interest in identifying environmentally friendly alternatives to synthetic dyes and in using liquid CO2 as a waterless medium for applying the resulting colorants to textiles, our attention turned to yellow-to-red biocolorants produced by Cortinarius sanguineus fungus. The three principal target anthraquinone colorants (emodin, dermocybin, and dermorubin) were isolated from the fungal bodies using a liquid–liquid separation method and characterized using 700 MHz NMR and high-resolution mass spectral analyses. Following structure confirmations, the three colorants were examined for dyeing synthetic polyester (PET) textile fibers in supercritical CO2. We found that all three biocolorants were suitable for dyeing PET fibers using this technology, and our attention then turned to determining their toxicological properties. As emodin has shown mutagenic potential in previous studies, we concentrated our present toxicity studies on dermocybin and dermorubin. Both colorants were non-mutagenic, presented low cellular toxicity, and did not induce skin sensitization. Taken together, our results indicate that dermocybin and dermorubin possess the technical and toxicological properties needed for consideration as synthetic dye alternatives under conditions that are free of wastewater production
    • …
    corecore