12 research outputs found

    Using molluscan assemblages from paleotsunami deposits to evaluate the influence of topography on the magnitude of late Holocene mega-tsunamis on Ishigaki Island, Japan

    No full text
    Abstract Four ancient tsunami deposits were identified in a trench excavated on Ishigaki Island, Okinawa, Japan. Three of the tsunami deposits (T-I, T-II, and T-IV) consist of calcareous sand beds, whereas the other (T-III, located stratigraphically between T-II and T-IV) consists of boulders. Deposit T-I was caused by a tsunami in 1771. 14C dating, together with the elevations of the landward margins of these sandy tsunami deposits, suggests that tsunamis II and IV were similar in size to the 1771 tsunami, although the influence of local topographic features on the magnitudes of tsunamis has not yet been examined. This study reconstructs the local topographic features by comparing the molluscan assemblages incorporated within the tsunami deposits with those in recent beach deposits. The presence of species that inhabit the intertidal zone in lagoonal settings in all the assemblages indicates that the present-day shallow lagoon has been present off the study area since the occurrence of tsunami T-IV, which supports the previous hypothesis that the magnitudes of the 1771 tsunami and tsunamis II and IV were similar. These molluscan assemblages also suggest that a high relative abundance of large, heavy mollusc shells is a feature of the paleotsunami deposits in the coastal lowlands found along the shallow coral lagoons

    Secular and coseismic changes in S-wave velocity detected using ACROSS in the Tokai region

    No full text
    Abstract We discovered a secular change in the travel time of direct S-waves over a 10-year observation period by means of continuous operation of an artificial and stable seismic source, called Accurately Controlled Routinely Operated Signal System (ACROSS), which is deployed in the central part of Japan along the Nankai Trough. We used 13 High Sensitivity Seismograph Network Japan (Hi-net) stations around the ACROSS source to monitor the temporal variation in travel time. Green’s functions were calculated for each station daily from March 29, 2007, through October 30, 2017. Secular advance in the temporal variation in travel time was seen for the whole operation period, in addition to a steplike delay associated with the 2011 Tohoku earthquake. We estimated the rate of secular change and the amount of coseismic step by modeling the transfer function of S-waves with a linear trend and the coseismic step of the 2011 Tohoku earthquake. Distance dependences of the travel time changes can be explained as a combination of common bias and dispersion for each station, for both the secular and coseismic changes. This can be interpreted as a randomly distributed change in seismic velocity over the range of the observation region. An azimuthal dependence exists for both changes and shows larger changes in the NE–SW direction than in the NW–SE direction from the ACROSS source

    Variations of fluid pressure within the subducting oceanic crust and slow earthquakes

    Get PDF
    We show fine‐scale variations of seismic velocities and converted teleseismic waves that reveal the presence of zones of high‐pressure fluids released by progressive metamorphic dehydration reactions in the subducting Philippine Sea plate in Tokai district, Japan. These zones have a strong correlation with the distribution of slow earthquakes, including long-term slow slip (LTSS) and low-frequency earthquakes (LFEs). Overpressured fluids in the LTSS region appear to be trapped within the oceanic crust by an impermeable cap rock in the fore-arc, and impede intraslab earthquakes therein. In contrast, fluid pressures are reduced in the LFE zone, which is deeper than the centroid of the LTSS, because there fluids are able to infiltrate into the narrow corner of the mantle wedge, leading to mantle serpentinization. The combination of fluids released from the subducting oceanic crust with heterogeneous fluid transport properties in the hanging wall generates variations of fluid pressures along the downgoing plate boundary, which in turn control the occurrence of slow earthquakes
    corecore