31 research outputs found

    The Sarin-like Organophosphorus Agent bis(isopropyl methyl)phosphonate Induces Apoptotic Cell Death and COX-2 Expression in SK-N-SH Cells

    Get PDF
    Organophosphorus compounds, such as sarin, are highly toxic nerve agents that inhibit acetylcholinesterase (AChE), but not cholinesterase, via multiple mechanisms. Recent studies have shown that organophosphorus compounds increase cyclooxygenase-2 (COX-2) expression and induce neurotoxicity. In this study, we examined the toxicity of the sarin-like organophosphorus agent bis(isopropyl methyl)phosphonate (BIMP) and the effects of BIMP on COX-2 expression in SK-N-SH human neuroblastoma cells. Exposure to BIMP changed cell morphology and induced caspase-dependent apoptotic cell death accompanied by cleavage of caspase 3, caspase 9, and poly (ADP-ribose) polymerase (PARP). It also increased COX-2 expression, while pretreatment with a COX inhibitor, ibuprofen, decreased BIMP-dependent cell death and COX-2 expression in SK-N-SH cells. Thus, our findings suggest that BIMP induces apoptotic cell death and upregulates COX-2 expression

    Construction of a Database of Pi-SAR2 Observation Data by Calibration and Scattering Power Decomposition Using the ABCI

    No full text
    Pi-SAR2 is an airborne polarimetric synthetic aperture radar operated by the National Institute of Information and Communications Technology. The polarimetric observation data of Pi-SAR2 are very valuable because of its high resolution, but it cannot be used effectively because the data are not well calibrated with respect to elevation. Therefore, we have calibrated the data according to the observation conditions. The Pi-SAR2 observation data are very large due to its high resolution and require sufficient computational resources to be calibrated. We utilized the AI Bridging Cloud Infrastructure (ABCI), constructed and operated by the National Institute of Advanced Industrial Science and Technology, to calculate them. This paper reports on the calibration, scattering power decomposition, and orthorectification of the Pi-SAR2 observation data using the ABCI

    Effects of Environmental Factors on the Leaching and Immobilization Behavior of Arsenic from Mudstone by Laboratory and In Situ Column Experiments

    No full text
    Hydrothermally altered rocks generated from underground/tunnel projects often produce acidic leachate and release heavy metals and toxic metalloids, such as arsenic (As). The adsorption layer and immobilization methods using natural adsorbents or immobilizer as reasonable countermeasures have been proposed. In this study, two sets of column experiments were conducted, of which one was focused on the laboratory columns and other on the in situ columns, to evaluate the effects of column conditions on leaching of As from excavated rocks and on adsorption or immobilization behavior of As by a river sediment (RS) as a natural adsorbent or immobilizer. A bottom adsorption layer consisting of the RS was constructed under the excavated rock layer or a mixing layer of the excavated rock and river sediment was packed in the column. The results showed that no significant trends in the adsorption and immobilization of As by the RS were observed by comparing laboratory and in situ column experiments because the experimental conditions did not influence significant change in the leachate pH which affects As adsorption or immobilization. However, As leaching concentrations of the in situ experiments were higher than those of the laboratory column experiments. In addition, the lower pH, higher Eh and higher coexisting sulfate ions of the leachate were observed for the in situ columns, compared to the results of the laboratory columns. These results indicate that the leaching concentration of As became higher in the in situ columns, resulting in higher oxidation of sulfide minerals in the rock. This may be due to the differences in conditions, such as temperature and water content, which induce the differences in the rate of oxidation of minerals contained in the rock. On the other hand, since the leachate pH affecting As adsorption or immobilization was not influenced significantly, As adsorption or immobilization effect by the RS were effective for both laboratory and in situ column experiments. These results indicate that both in situ and laboratory column experiments are useful in evaluating leaching and adsorption of As by natural adsorbents, despite the fact that the water content which directly affects the rate of oxidation is sensitive to weathering conditions

    Leaching and Adsorption Behavior of Arsenic and Selenium from Excavated Mudstones Considering Their Chemical Species

    No full text
    Rocks generated from tunnel construction projects for roads and railways throughout Japan have often leached out hazardous trace elements, such as arsenic (As) and selenium (Se). In nature, the oxyanionic species of As and Se have a variety of chemical species, so speciation is one of the crucial factors in their migration through natural geologic media. In this study, column experiments consisting of four types of crushed rock samples containing As and Se, and a river sediment (RS) as an adsorbent obtained near the tunnel construction site were conducted to evaluate the leaching and adsorption behavior of arsenite (As (III) ), arsenate (As (V) ), selenite (Se (IV) ), and selenate (Se (VI) ). The results showed that the dominant speciation of As and Se in the effluent from the rock layer was As (V) and Se (VI), and that the addition of a bottom RS adsorption layer or the mixing of RS with the rock layer decreased the leaching concentrations of As (III), As (V), Se (IV), and Se (VI). Cumulative leachability (CL) for each speciation through the column experiments was calculated to evaluate the amounts of As and Se retained in RS. The calculated CL showed that the bottom RS layer or mixing of RS with the rock reduced the CL of As (III), As (V), Se (IV), and Se (IV) ranging from 60 to 89%, 73 to 89%, 9 to 75%, and 36 to 60%, respectively; however, mixing of RS with the rock layer was ineffective in decreasing CL of Se (VI). The reduction of CL may be due to adsorption and/or coprecipitation by iron and/or aluminum oxides contained in RS. These results indicated that utilization of RS for the bottom adsorption layer was effective in reducing As and Se concentrations irrespective of their speciation, although that of mixed with rock layer was effective only in reducing As concentrations irrespective of their speciation

    An Enantiopair of Organic Ferromagnet Crystals Based on Helical Molecular Packing of Achiral Organic Radicals

    No full text
    We report the ferromagnetic ordering phenomena occurring in organic molecular crystals with structural chirality. Achiral radical <b>1</b> has been found to crystallize in two enantiomorphs with chiral space groups of <i>P</i>4<sub>3</sub> and <i>P</i>4<sub>1</sub>. The <i>P</i>4<sub>3</sub> form (<b>1L</b>) has left-handed stacking of the molecules, giving the helical chirality in a crystalline solid. In the other form of <i>P</i>4<sub>1</sub> (<b>1R</b>), the right-handed stacking corresponds to a mirror image of <b>1L</b>. Magnetic susceptibility measurements show that both the crystals undergo a ferromagnetic phase transition at <i>T</i><sub>C</sub> = 1.1 K. The ferromagnetic ordering has been confirmed by heat capacity measurements. The magnetic heat capacity exhibits a λ-shaped peak at <i>T</i><sub>C</sub> = 1.1 K with an entropy change of <i>R </i>ln 2, as expected for <i>S</i> = 1/2 spins. This is the first example of genuinely organic molecule-based ferromagnetism associated with the structural chirality based on the helical molecular packing in the crystalline solid
    corecore