22 research outputs found
Video imaging of walking myosin V by high-speed atomic force microscopy
金沢大学理工研究域数物科学系The dynamic behaviour of myosin V molecules translocating along actin filaments has been mainly studied by optical microscopy. The processive hand-over-hand movement coupled with hydrolysis of adenosine triphosphate was thereby demonstrated. However, the protein molecules themselves are invisible in the observations and have therefore been visualized by electron microscopy in the stationary states. The concomitant assessment of structure and dynamics has been unfeasible, a situation prevailing throughout biological research. Here we directly visualize myosin V molecules walking along actin tracks, using high-speed atomic force microscopy. The high-resolution movies not only provide corroborative \u27visual evidence\u27 for previously speculated or demonstrated molecular behaviours, including lever-arm swing, but also reveal more detailed behaviours of the molecules, leading to a comprehensive understanding of the motor mechanism. Our direct and dynamic high-resolution visualization is a powerful new approach to studying the structure and dynamics of biomolecules in action
The fastest-actin-based motor protein from the green algae, Chara, and its distinct mode of interaction with actin
AbstractThe endoplasmic streaming in Characean cells is an actin-dependent movement. The motor protein responsible for the streaming was partially purified and characterized. It was soluble at low ionic strength, an ATPase of a molecular mass of 225 kDa and activated more than 100 times by muscle F-actin. Surprisingly, in an in vitro motility assay, the motor protein moved muscle F-actin at 60 μm/s, which is similar to the velocity of streaming in a living cell and 10 times faster than muscle myosin. Proteolytic cleavage of actin impaired movement crucially on muscle myosin, but did not affect movement at all on the Chara motor protein, suggesting that the Chara motor protein would interact with actin via a set of sites different from those of muscle myosin