467 research outputs found

    Realization of the Lepton Flavor Structure from Point Interactions

    Get PDF
    We investigate a 5d gauge theory on S1S^1 with point interactions. The point interactions describe extra boundary conditions and provide three generations, the charged lepton mass hierarchy, the lepton flavor mixing and tiny degenerated neutrino masses after choosing suitable boundary conditions and parameters. The existence of the restriction in the flavor mixing, which appears from the configuration of the extra dimension, is one of the features of this model. Tiny Yukawa couplings for the neutrinos also appears without the see-saw mechanism nor symmetries in our model. The magnitude of CP violation in the leptons can be a prediction and is consistent with the current experimental data.Comment: 9 pages, 3 figures, 3rd International Conference on New Frontiers in Physic

    Realization of lepton masses and mixing angles from point interactions in an extra dimension

    Get PDF
    We investigate a model on an extra dimension S1S^1 where plenty of effective boundary points described by point interactions (zero-thickness branes) are arranged. After suitably selecting the conditions on these points for each type of five-dimensional fields, we realize the tiny active neutrino masses, the charged lepton mass hierarchy, and lepton mixings with a CP-violating phase, simultaneously. Not only the quark's but also the lepton's configurations are generated in a unified way with acceptable accuracy, with neither the see-saw mechanism nor symmetries in Yukawa couplings, by suitably setting the model parameters, even though their flavor structures are dissimilar each other. One remarkable point is that a complex vacuum expectation value of the five-dimensional Higgs doublet in this model becomes the common origin of the CP violation in both quark and lepton sectors. The model can be consistent with the results of the precision electroweak measurements and Large Hadron Collider experiments.Comment: 29 pages, 7 figures (v1); 28 pages, 7 figures in JHEP style file, published version in JHEP, a subsection added, typo fixed (v2

    Probing the Structure of Gamma-Ray Burst Jets with Steep Decay Phase of their Early X-ray Afterglows

    Full text link
    We show that the jet structure of gamma-ray bursts (GRBs) can be investigated with the tail emission of the prompt GRB. The tail emission which we consider is identified as a steep-decay component of the early X-ray afterglow observed by the X-ray Telescope onboard Swift. Using a Monte Carlo method, we derive, for the first time, the distribution of the decay index of the GRB tail emission for various jet models. The new definitions of the zero of time and the time interval of a fitting region are proposed. These definitions for fitting the light curve lead us an unique definition of the decay index, which is useful to investigate the structure of the GRB jet. We find that if the GRB jet has a core-envelope structure, the predicted distribution of the decay index of the tail has a wide scatter and has multiple peaks, which cannot be seen for the case of the uniform and the Gaussian jet. Therefore, the decay index distribution tells us the information on the jet structure. Especially, if we observe events whose decay index is less than about 2, both the uniform and the Gaussian jet models will be disfavored according to our simulation study.Comment: 21 pages, 10 figures, the paper with full resolution images is http://theo.phys.sci.hiroshima-u.ac.jp/~takami/research/achievements/papers/003_full.pd

    Evaluation of internal margins for prostate for step and shoot intensity‐modulated radiation therapy and volumetric modulated arc therapy using different margin formulas

    Get PDF
    [Purpose] This feasibility study evaluated the intra-fractional prostate motion using an ultrasound image-guided system during step and shoot intensity-modulated radiation therapy (SS-IMRT) and volumetric modulated arc therapy (VMAT). Moreover, the internal margins (IMs) using different margin formulas were calculated. [Methods] Fourteen consecutive patients with prostate cancer who underwent SS-IMRT (n = 5) or VMAT (n = 9) between March 2019 and April 2020 were considered. The intra-fractional prostate motion was observed in the superior–inferior (SI), anterior–posterior (AP), and left–right (LR) directions. The displacement of the prostate was defined as the displacement from the initial position at the scanning start time, which was evaluated using the mean ± standard deviation (SD). IMs were calculated using the van Herk and restricted maximum likelihood (REML) formulas for SS-IMRT and VMAT. [Results] For SS-IMRT, the maximum displacements of the prostate motion were 0.17 ± 0.18, 0.56 ± 0.86, and 0.18 ± 0.59 mm in the SI, AP, and LR directions, respectively. For VMAT, the maximum displacements of the prostate motion were 0.19 ± 0.64, 0.22 ± 0.35, and 0.14 ± 0.37 mm in the SI, AP, and LR directions, respectively. The IMs obtained for SS-IMRT and VMAT were within 2.3 mm and 1.2 mm using the van Herk formula and within 1.2 mm and 0.8 mm using the REML formula. [Conclusions] This feasibility study confirmed that intra-fractional prostate motion was observed with SS-IMRT and VMAT using different margin formulas. The IMs should be determined according to each irradiation technique using the REML margin

    Peritumoral radiomics features on preoperative thin-slice CT images can predict the spread through air spaces of lung adenocarcinoma

    Get PDF
    The spread through air spaces (STAS) is recognized as a negative prognostic factor in patients with early-stage lung adenocarcinoma. The present study aimed to develop a machine learning model for the prediction of STAS using peritumoral radiomics features extracted from preoperative CT imaging. A total of 339 patients who underwent lobectomy or limited resection for lung adenocarcinoma were included. The patients were randomly divided (3:2) into training and test cohorts. Two prediction models were created using the training cohort: a conventional model based on the tumor consolidation/tumor (C/T) ratio and a machine learning model based on peritumoral radiomics features. The areas under the curve for the two models in the testing cohort were 0.70 and 0.76, respectively ( = 0.045). The cumulative incidence of recurrence (CIR) was significantly higher in the STAS high-risk group when using the radiomics model than that in the low-risk group (44% vs. 4% at 5 years;  = 0.002) in patients who underwent limited resection in the testing cohort. In contrast, the 5-year CIR was not significantly different among patients who underwent lobectomy (17% vs. 11%;  = 0.469). In conclusion, the machine learning model for STAS prediction based on peritumoral radiomics features performed better than the C/T ratio model
    corecore