48 research outputs found

    Preparation and thermal properties of mineral-supported polyethylene glycol as form-stable composite phase change materials (CPCMs) used in asphalt pavements

    Get PDF
    Tis work was supported by the National Natural Science Foundation of China (51704040, 51778071, 51608058), the Scientifc Research Project of Hunan Provincial Department of Education for Excellent Young Scholars (16B007), Open Fund of Key Laboratory of Special Environment Road Engineering of Hunan Province (Changsha University of Science & Technology, kf160501), and Open Fund of Key Laboratory of Biohydrometallurgy, Ministry of Education (Central South University, MOEKLB1708)

    Empirical investigation to explore potential gains from the amalgamation of Phase Changing Materials (PCMs) and wood shavings

    Get PDF
    The reduction of gained heat, heat peak shifting and the mitigation of air temperature fluctuations are some desirable properties that are sought after in any thermal insulation system. It cannot be overstated that these factors, in addition to others, govern the performance of such systems thus their effect on indoor ambient conditions. The effect of such systems extends also to Heating, Ventilation and Air-conditioning (HVAC) systems that are set up to operate optimally in certain conditions. Where literature shows that PCMs and natural materials such as wood-shavings can provide efficient passive insulation for buildings, it is evident that such approaches utilise methods that are of a degree of intricacy which requires specialist knowledge and complex techniques, such as micro-encapsulation for instance. With technical and economic aspects in mind, an amalgam of PCM and wood-shavings has been created for the purpose of being utilised as a feasible thermal insulation. The amalgamation was performed in the simplest of methods, through submerging the wood shavings in PCM. An experimental procedure was devised to test the thermal performance of the amalgam and compare this to the performance of the same un-amalgamated materials. Comparative analysis revealed that no significant thermal gains would be expected from such amalgamation. However, significant reduction in the total weight of the insulation system would be achieved that, in this case, shown to be up to 20.94%. Thus, further reducing possible strains on structural elements due to the application of insulation on buildings. This can be especially beneficial in vernacular architectural approaches where considerably large amounts and thicknesses of insulations are used. In addition, cost reduction could be attained as wood shavings are significantly cheaper compared to the cost of PCMs

    Latent Thermal Energy Storage Technologies and Applications: A Review

    Get PDF
    The achievement of European climate energy objectives which are contained in the European Union's (EU) “20-20-20” targets and in the European Commission's (EC) Energy Roadmap 2050 is possible, among other things, through the use of energy storage technologies. The use of thermal energy storage (TES) in the energy system allows to conserving energy, increase the overall efficiency of the systems by eliminating differences between supply and demand for energy. The article presents different methods of thermal energy storage including sensible heat storage, latent heat storage and thermochemical energy storage, focusing mainly on phase change materials (PCMs) as a form of suitable solution for energy utilisation to fill the gap between demand and supply to improve the energy efficiency of a system . PCMs allow the storage of latent thermal energy during phase change at almost stable temperature. The article presents a classification of PCMs according to their chemical nature as organic, inorganic and eutectic and by the phase transition with their advantages and disadvantages. In addition, different methods of improving the effectiveness of the PCM materials such as employing cascaded latent heat thermal energy storage system, encapsulation of PCMs and shape-stabilisation are presented in the paper. Furthermore, the use of PCM materials in buildings, power generation, food industry and automotive applications are presented and the modelling tools for analysing the functionality of PCMs materials are compared and classified

    Post-Pyrolytic Carbon as a Phase Change Materials (PCMs) Carrier for Application in Building Materials

    No full text
    This article covers new application for char as a carrier of phase-change materials (PCM) that could be used as an additive to building materials. Being composed of bio-char and PCM, the granulate successfully competes with more expensive commercial materials of this type, such as Micronal® PCM. As a PCM carrier, char that was obtained from the pyrolysis of chestnut fruit (Aesculus hippocastanum) with different absorbances of the model phase-change material, Rubitherm RT22, was tested. DSC analysis elucidated several thermal properties (such as enthalpy, phase transition temperature, and temperature peak) of those mixtures and the results were compared with a commercial equivalent, Micronal DS 5040 X. Comparative research, approximating realistic conditions, were also performed by cooling and heating samples in a form of coatings that were made from chars with different content of RT22. These results indicated that the use of char as a PCM carrier was not only possible, but also beneficial from a thermodynamic point of view and it could serve as an alternative to commercial products. In this case, adsorption RT22 into char allowed for temperature stabilization comparable to Micronal DS 5040 X with ease of use as well as the economic advantages of being very low cost to produce due to microencapsulation. Other advantage of the proposed solution is related with the application of char obtained from waste biomass pyrolysis as a PCM carrier, and using this product in building construction to improve thermal comfort and increase energy efficiency
    corecore