4,000 research outputs found

    Radioactive method enables determination of surface areas rapidly and accurately

    Get PDF
    Radioactive krypton adsorption technique is used to determine the surface area of more than one sample of material simultaneously

    Soleus H-reflex Excitability Changes in Response to Sinusoidal Hip Stretches in the Injured Human Spinal Cord

    Get PDF
    Imposed static hip stretches substantially modulate the soleus H-reflex in people with an intact or injured spinal cord while stretch of the hip flexors affect the walking pattern in lower vertebrates and humans. The aim of this study was to assess the effects of dynamic hip stretches on the soleus H-reflex in supine spinal cord injured (SCI) subjects. Sinusoidal movements were imposed on the right hip joint at 0.2 Hz by a Biodex system. H-reflexes from the soleus muscle were recorded as the leg moved in flexion or extension. Stimuli were sent only once in every hip movement cycle that each lasted 5 s. Torque responses were recorded at the hip, knee, and ankle joints. A hip phase-dependent soleus H-reflex modulation was present in all subjects. The reflex was facilitated during hip extension and suppressed during hip flexion. There were no significant differences in pre- or post-stimulus soleus background activity between the two conditions. Oscillatory responses were present as the hip was maximally flexed. Sinusoidal hip stretches modulated the soleus H-reflex in a manner similar to that previously observed following static hip stretches. The amount of reflex facilitation depended on the angle of hip extension. Further research is needed on the afferent control of spinal reflex pathways in health and disease in order to better understand the neural control of movement in humans. This will aid in the development of rehabilitation strategies to restore motor function in these patients

    Modulation of Stretch Reflexes of the Finger Flexors by Sensory Feedback from the Proximal Upper Limb Poststroke

    Get PDF
    Neural coupling of proximal and distal upper limb segments may have functional implications in the recovery of hemiparesis after stroke. The goal of the present study was to investigate whether the stretch reflex response magnitude of spastic finger flexor muscles poststroke is influenced by sensory input from the shoulder and the elbow and whether reflex coupling of muscles throughout the upper limb is altered in spastic stroke survivors. Through imposed extension of the metacarpophalangeal (MCP) joints, stretch of the relaxed finger flexors of the four fingers was imposed in 10 relaxed stroke subjects under different conditions of proximal sensory input, namely static arm posture (3 different shoulder/elbow postures) and electrical stimulation (surface stimulation of biceps brachii or triceps brachii, or none). Fast (300°/s) imposed stretch elicited stretch reflex flexion torque at the MCP joints and reflex electromyographic (EMG) activity in flexor digitorum superficialis. Both measures were greatest in an arm posture of 90° of elbow flexion and neutral shoulder position. Biceps stimulation resulted in greater MCP stretch reflex flexion torque. Fast imposed stretch also elicited reflex EMG activity in nonstretched heteronymous upper limb muscles, both proximal and distal. These results suggest that in the spastic hemiparetic upper limb poststroke, sensorimotor coupling of proximal and distal upper limb segments is involved in both the increased stretch reflex response of the finger flexors and an increased reflex coupling of heteronymous muscles. Both phenomena may be mediated through changes poststroke in the spinal reflex circuits and/or in the descending influence of supraspinal pathways

    Scientifically Defensible and Measurable Anti-Phishing Training

    Get PDF
    Problem: How can the effectiveness of a phishing attack be quantified and/or measured? Applications: This project will provide a resource for Idaho National Labs to quantitavely evaluate the effectiveness of their security awareness program in regards to phishing attacks. In turn, it will aid them in hardening the human element of security at the research facility. Approach: Our approach is to construct a fully functional phishing system where we can craft phishing emails, send emails, and place links that point to our web application. We hope to use this system to conduct an anonymous and non-malicious experiment. This data will assist in the design and implementation of the algorithm that will evaluate the relative effectiveness of a phishing email. Interim Results: At this point in time we have have started the experimental approval process and developed a functioning phishing system to use in our experiment. We have created the framework in which to construct our algorithm. Anticipated Results: Next Semester we plan to have a fully functioning phishing email evaluation algorithm. In addition are trying to run a live phishing study at VCU and if it is approved, itwill provide valuable data on the accuracy of our algorithm.https://scholarscompass.vcu.edu/capstone/1027/thumbnail.jp

    Plasma electrons above Saturn's main rings: CAPS observations

    Get PDF
    We present observations of thermal ( similar to 0.6 - 100eV) electrons observed near Saturn's main rings during Cassini's Saturn Orbit Insertion (SOI) on 1 July 2004. We find that the intensity of electrons is broadly anticorrelated with the ring optical depth at the magnetic footprint of the field line joining the spacecraft to the rings. We see enhancements corresponding to the Cassini division and Encke gap. We suggest that some of the electrons are generated by photoemission from ring particle surfaces on the illuminated side of the rings, the far side from the spacecraft. Structure in the energy spectrum over the Cassini division and A-ring may be related to photoelectron emission followed by acceleration, or, more likely, due to photoelectron production in the ring atmosphere or ionosphere

    The Hector Mine, California, Earthquake of 16 October 1999: Introduction to the Special Issue

    Get PDF
    The Hector Mine, California, earthquake (M_w 7.1) struck the Mojave Desert at 09:46 UTC, 16 October 1999. The earthquake occurred approximately 55 km northwest of the town of Twentynine Palms, California, and about 200 km east-northeast of Los Angeles (Fig. 1). The shock was widely felt throughout southern California, southern Nevada, western Arizona, and northernmost Baja California, Mexico. The Hector Mine earthquake, like the M_w 7.3 Landers earthquake seven years earlier, was associated with fault rupture in the eastern California shear zone (ECSZ) (Fig. 1), which is an approximately 80-km-wide zone of deformation that accommodates about 24% of the relative Pacific–North American plate motion (Sauber et al., 1986, 1994; Dokka and Travis, 1990; Savage et al., 1990, 2001; Gan et al., 2000; Miller et al., 2001). A block diagram highlighting some of the basic aspects of the Hector Mine earthquake is presented in Figure 2. A preliminary summary of the Hector Mine earthquake, its effects, and the response of the geoscience community is presented by Scientists from the U.S. Geological Survey; Southern California Earthquake Center, and California Division of Mines and Geology (USGS, SCEC, and CDMG, 2000)
    corecore