16 research outputs found

    Droplet-target laser-plasma source for proximity x-ray lithography

    Get PDF
    A compact, high-brightness and practically debris-free laser-plasma soft x-ray source for proximity x-ray lithography is described. The target of the source is small liquid fluorocarbon droplets injected into vacuum with a piezoelectrically vibrated nozzle. Emission from helium- and hydrogenlike fluorine in the 1.2-1.7 nm wavelength range was determined to similar to 2X10(12) photons/(sr-pulse). which corresponds to a conversion efficiency of similar to 5% of the 70 mJ laser pulse. Exposure of a copolymer of PMMA-MAA confirms the measured photon flux. Debris production was approximately 70 pg/sr pulse. The applicability of the source for dedicated lithography systems is discussed. (C) 1996 American Institute of Physics

    Droplet‐target laser‐plasma source for proximity x‐ray lithography

    Get PDF
    A compact, high-brightness and practically debris-free laser-plasma soft x-ray source for proximity x-ray lithography is described. The target of the source is small liquid fluorocarbon droplets injected into vacuum with a piezoelectrically vibrated nozzle. Emission from helium- and hydrogenlike fluorine in the 1.2-1.7 nm wavelength range was determined to similar to 2X10(12) photons/(sr-pulse). which corresponds to a conversion efficiency of similar to 5% of the 70 mJ laser pulse. Exposure of a copolymer of PMMA-MAA confirms the measured photon flux. Debris production was approximately 70 pg/sr pulse. The applicability of the source for dedicated lithography systems is discussed. (C) 1996 American Institute of Physics

    Liquid-jet target for laser-plasma soft x-ray generation

    Get PDF
    We describe a new liquid-target system for low-debris laser-plasma soft x-ray sources. The system is based on a microscopic liquid jet and is experimentally evaluated for 0.7-1 keV proximity lithography and water-window x-ray microscopy applications. Compared to an existing liquid-droplet target, this target system has the same low debris emission, high x-ray photon flux, and narrow spectral bandwidth. The advantages of the liquid-jet target include improved x-ray flux stability, increased range of suitable target liquids, and elimination of the need for temporal synchronization, thereby allowing less complex laser systems to be used. (C) 1996 American Institute of Physics

    Ultrafast Laser Accelerated Plasma Propulsion System for Space Exploration

    No full text

    The Effect of Multi-Parametric Magnetic Resonance Imaging in Standard of Care for Nonalcoholic Fatty Liver Disease: Protocol for a Randomized Control Trial

    Get PDF
    Background: The rising prevalence of nonalcoholic fatty liver disease (NAFLD) and the more aggressive subtype, nonalcoholic steatohepatitis (NASH), is a global public health concern. Left untreated, NAFLD/NASH can lead to cirrhosis, liver failure, and death. The current standard for diagnosing and staging liver disease is a liver biopsy, which is costly, invasive, and carries risk for the patient. Therefore, there is a growing need for a reliable, feasible, and cost-effective, noninvasive diagnostic tool for these conditions. LiverMultiScan is one such promising tool that uses multi-parametric magnetic resonance imaging (mpMRI) to characterize liver tissue and to aid in the diagnosis and monitoring of liver diseases of various etiologies.Objective: The primary objective of this trial (RADIcAL1) is to evaluate the cost-effectiveness of the introduction of LiverMultiScan as a standardized diagnostic test for liver disease in comparison to standard care for NAFLD, in different EU territories.Methods: RADIcAL1 is a multi-center randomized control trial with 2 arms conducted in 4 European territories (13 sites, from across Germany, Netherlands, Portugal, and the United Kingdom). In total, 1072 adult patients with suspected fatty liver disease will be randomized to be treated according to the result of the mpMRI in the intervention arm, so that further diagnostic evaluation is recommended only when values for metrics of liver fat or fibro-inflammation are elevated. Patients in the control arm will be treated as per center guidelines for standard of care. The primary outcome for this trial is to compare the difference in the proportion of patients with suspected NAFLD incurring liver-related hospital consultations or liver biopsies between the study arms, from the date of randomization to the end of the study follow-up. Secondary outcomes include patient feedback from a patient satisfaction questionnaire, at baseline and all follow-up visits to the end of the study, and time, from randomization to diagnosis by the physician, as recorded at the final follow-up visit.Results: This trial is currently open for recruitment. The anticipated completion date for the study is December 2020.Conclusions: This randomized controlled trial will provide the evidence to accelerate decision making regarding the inclusion of mp MRI-based tools in existing NAFLD/NASH clinical care. RADIcAL1 is among the first and largest European health economic studies of imaging technologies for fatty liver disease. Strengths of the trial include a high-quality research design and an in-depth assessment of the implementation of the cost-effectiveness of the mpMRI diagnostic. If effective, the trial mayhighlight the health economic burden on tertiary-referral hepatology clinics imposed by unnecessary consultations and invasive diagnostic investigations, and demonstrate that including LiverMultiScan as a NAFLD diagnostic test may be cost-effective compared to liver-related hospital consultations or liver biopsies.Radiolog
    corecore