28 research outputs found

    Prototype Active Silicon Sensor in 150 nm HR-CMOS Technology for ATLAS Inner Detector Upgrade

    Full text link
    The LHC Phase-II upgrade will lead to a significant increase in luminosity, which in turn will bring new challenges for the operation of inner tracking detectors. A possible solution is to use active silicon sensors, taking advantage of commercial CMOS technologies. Currently ATLAS R&D programme is qualifying a few commercial technologies in terms of suitability for this task. In this paper a prototype designed in one of them (LFoundry 150 nm process) will be discussed. The chip architecture will be described, including different pixel types incorporated into the design, followed by simulation and measurement results.Comment: 9 pages, 9 figures, TWEPP 2015 Conference, submitted to JINS

    BDAQ53, a versatile pixel detector readout and test system for the ATLAS and CMS HL-LHC upgrades

    Full text link
    BDAQ53 is a readout system and verification framework for hybrid pixel detector readout chips of the RD53 family. These chips are designed for the upgrade of the inner tracking detectors of the ATLAS and CMS experiments. BDAQ53 is used in applications where versatility and rapid customization are required, such as in laboratory testing environments, test beam campaigns, and permanent setups for quality control measurements. It consists of custom and commercial hardware, a Python-based software framework, and FPGA firmware. BDAQ53 is developed as open source software with both software and firmware being hosted in a public repository.Comment: 6 pages, 6 figure

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    Design and Performance of the BCM1F Front End ASIC for the Beam Condition Monitoring System at the CMS Experiment

    No full text
    We present the design and the test results of the BCM1F front end ASIC designed for readout of diamond sensors used in the Beam Condition Monitoring system at the Compact Muon Solenoid (CMS) experiment built in the European Organization for Nuclear Research (CERN) in Geneva. The design comprises a fast transimpedance preamplifier with active feedback, a shaper stage and high-performance differential output buffer. The front end amplifier shows good linearity for input charges below 7 fC, signal gain of about 50 mV/fC, equivalent noise charge (ENC) around 400 e- for 2 pF and less than 700 e- for 5 pF input capacitance. The measured peaking time (Tp) is in the range from 6.6 to 9.4 ns depending on the applied bias conditions and the input capacitance. The full-width-at-half-maximum (FWHM) of the response is kept below 10 ns, which allows for efficient beam halo detection. The return time after the detector signal overdrive is maintained below 25 ns. These two latter parameters make the presented circuit compatible with high data rate applications

    A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene

    No full text
    Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common −65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications—superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor)

    Inter-Individual Differences in RNA Levels in Human Peripheral Blood

    No full text
    <div><p>Relatively little is known about the range of RNA levels in human blood. This report provides assessment of peripheral blood RNA level and its inter-individual differences in a group of 35 healthy humans consisting of 25 females and 10 males ranging in age from 50 to 89 years. In this group, the average total RNA level was 14.59 μg/ml of blood, with no statistically significant difference between females and males. The individual RNA level ranged from 6.7 to 22.7 μg/ml of blood. In healthy subjects, the repeated sampling of an individual’s blood showed that RNA level, whether high or low, was stable. The inter-individual differences in RNA level in blood can be attributed to both, differences in cell number and the amount of RNA per cell. The 3.4-fold range of inter-individual differences in total RNA levels, documented herein, should be taken into account when evaluating the results of quantitative RT-PCR and/or RNA sequencing studies of human blood. Based on the presented results, a comprehensive assessment of gene expression in blood should involve determination of both the amount of mRNA per unit of total RNA (U / ng RNA) and the amount of mRNA per unit of blood (U / ml blood) to assure a thorough interpretation of physiological or pathological relevance of study results.</p></div
    corecore