207 research outputs found

    A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond

    Get PDF
    According to the World Health Organization (WHO), almost 2 billion people each year are infected worldwide with flu-like pathogens including influenza. This is a contagious disease caused by viruses belonging to the family Orthomyxoviridae. Employee absenteeism caused by flu infection costs hundreds of millions of dollars every year. To successfully treat influenza virus infections, detection of the virus during the initial development phase of the infection is critical, when tens to hundreds of virus-associated molecules are present in the patient’s pharynx. In this study, we describe a novel universal diamond biosensor, which enables the specific detection of the virus at ultralow concentrations, even before any clinical symptoms arise. A diamond electrode is surface-functionalized with polyclonal anti-M1 antibodies, which then serve to identify the universal biomarker for the influenza virus, M1 protein. The absorption of the M1 protein onto anti-M1 sites of the electrode change its electrochemical impedance spectra. We achieved a limit of detection of 1 fg/ml in saliva buffer for the M1 biomarker, which corresponds to 5–10 viruses per sample in 5 minutes. Furthermore, the universality of the assay was confirmed by analyzing different strains of influenza A virus

    Properties of LiMnBO3 glasses and nanostructured glass-ceramics

    Full text link
    Polycrystalline LiMnBO3 is a promising cathode material for Li-ion batteries. In this work, we investigated the thermal, structural and electrical properties of glassy and nanocrystallized materials having the same chemical composition. The original glass was obtained via a standard meltquenching method. SEM and 7Li solid-state NMR indicate that it contains a mixture of two distinct glassy phases. The results suggest that the electrical conductivity of the glass is dominated by the ionic one. The dc conductivity of initial glass was estimated to be in the order of 10-18 S.cm-1 at room temperature. The thermal nanocrystallization of the glass produces a nanostructured glass-ceramics containing MnBO3 and LiMnBO3 phases. The electric conductivity of this glass-ceramics is increased by 6 orders of magnitude, compared to the starting material at room temperature. Compared to other manganese and borate containing glasses reported in the literature, the conductivity of the nanostructured glass ceramics is higher than that of the previously reported glassy materials. Such improved conductivity stems from the facilitated electronic transport along the grain boundaries

    MicroRNA Genes and Their Target 3′-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers

    Get PDF
    MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3′-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3′-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3′-untranslated regions are thus uncommon in ovarian cancer

    Corrosion Inhibition of AZ31-xLi (x = 4, 8, 12) magnesium alloys in sodium chloride solutions by aqueous molybdate

    Get PDF
    Corrosion of lithium-containing AZ31 magnesium alloys AZ31-xLi (x = 4, 8, and 12 wt%) has been examined in 0.05 M NaCl solution with and without 10–150 mM of Na[2]MoO[4] inhibitor. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and dynamic electrochemical impedance spectroscopy (DEIS) measurements were used to correlate the phase composition and microstructure of the alloys with their corrosion propensity and effectiveness of the molybdate inhibitor, giving high inhibition efficiency (>85%) at concentrations higher than ca. 35 mM. Post-corrosion microstructure, Raman, and X-ray photoelectron spectroscopy analyses allowed to provide the inhibition mechanism of AZ31-xLi alloys by molybdate ions.Коррозия литийсодержащих магниевых сплавов AZ31 AZ31-xLi (x = 4, 8 и 12 мас.%) была исследована в 0,05 М раствора NaCl с добавлением и без добавления 10-150 мм ингибитора Na[2]MoO[4]. Измерения потенциодинамической поляризации, электрохимической импедансной спектроскопии (EIS) и динамической электрохимической импедансной спектроскопии (DEIS) были использованы для корреляции фазового состава и микроструктуры сплавов с их склонностью к коррозии и эффективностью молибдатного ингибитора, что обеспечивает высокую эффективность ингибирования (>85%) при концентрациях, превышающих около 35 мм. Анализ микроструктуры после коррозии, комбинационного рассеяния света и рентгеновской фотоэлектронной спектроскопии позволил установить механизм ингибирования сплавов AZ31-xLi ионами молибдата

    Exploring Mechanism of Corrosion Inhibition of WE43 and AZ31 Alloys by 1 Aqueous Molybdate in Hank’s Solution by Multisine Impedimetric Monitoring

    Get PDF
    The concept of utilizing multisine dynamic electrochemical impedance spectroscopy and 25 distribution of relaxation times analysis to monitor effectiveness of a model molybdate inhibitor 26 for AZ31 and WE43 Mg alloys is proposed. The corrosion kinetics and instantaneous values of 27 inhibition efficiency (IE) of molybdate at concentrations up to 150 mM were examined.Предложена концепция использования многосинусоидальной динамической электрохимической импедансной спектроскопии и анализа распределения времен релаксации для мониторинга эффективности модельного молибдатного ингибитора для сплавов AZ31 и WE43 Mg. Были изучены кинетика коррозии и мгновенные значения эффективности ингибирования (ИЭ) молибдата при концентрациях до 150 мМ

    Effect of TiO[2] Concentration on Microstructure and Properties of Composite Cu–Sn–TiO[2] Coatings Obtained by Electrodeposition

    Get PDF
    In this work, Cu–Sn–TiO[2] composite coatings were electrochemically obtained from a sulfate bath containing 0–10 g/L of TiO[2] nanoparticles. The effect of TiO2 particles on kinetics of cathodic electrodeposition has been studied by linear sweep voltammetry and chronopotentiometry. As compared to the Cu–Sn alloy, the Cu–Sn–TiO[2] composite coatings show rougher surfaces with TiO[2] agglomerates embedded in the metal matrix. The highest average amount of included TiO[2] is 1.7 wt.%, in the case of the bath containing 5 g/L thereof. Composite coatings showed significantly improved antibacterial properties towards E. coli ATCC 8739 bacteria as compared to the Cu–Sn coatings of the same composition. Such improvement has been connected with the corrosion resistance of the composites studied by linear polarization and electrochemical impedance spectroscopy. In the bacterial media and 3% NaCl solutions, Cu–Sn–TiO[2] composite coatings have lower corrosion resistance as compared to Cu–Sn alloys, which is caused by the nonuniformity of the surface

    Aqueous molybdate provides effective corrosion inhibition of WE43 magnesium alloy in sodium chloride solutions

    Get PDF
    Corrosion and corrosion inhibition of WE43 magnesium alloy were investigated in NaCl solutions containing different amounts of sodium molybdate. Electrochemical, microscopic, and spectroscopic experiments were utilized to examine the mechanism of corrosion inhibition by molybdates. Electrochemical data showed that Na[2]MoO[4] inhibitor provides reliable inhibition at concentrations at and above 100 mM. Raman and XPS spectroscopy demonstrated that the formed surface layer consists of mixed Mo(V, IV) species. This layer provided inhibition with an efficiency of 91–99 % after 24 h of exposure. A two-step oxidation-reduction mechanism of corrosion inhibition of the WE43 alloy by aqueous molybdates was proposed

    Ultrasonic-assisted electrodeposition of Cu-Sn-TiO2 nanocomposite coatings with enhanced antibacterial activity

    Get PDF
    Copper-based coatings are known for their high antibacterial activity. In this study, nanocomposite Cu–Sn–TiO2 coatings were obtained by electrodeposition from an oxalic acid bath additionally containing 4 g/dm3 TiO2 with mechanical and ultrasonic agitation. Ultrasound treatment was performed at 26 kHz frequency and 32 W/dm3 power. The influence of agitation mode and the current load on the inclusion and distribution of the TiO2 phase in the Cu–Sn metallic matrix were evaluated. Results indicated that ultrasonic agitation decreases agglomeration of TiO2 particles and allows for the deposition of dense Cu–Sn–TiO2 nanocomposites. It is shown that nanocomposite Cu–Sn–TiO2 coatings formed by ultrasonic-assisted electrodeposition exhibit excellent antimicrobial properties against E. coli bacteria

    How to improve CSMA-based MAC protocol for dense RFID reader-to-reader Networks?

    Get PDF
    International audienceDue to the dedicated short range communication feature of passive radio frequency identification (RFID) and the closest proximity operation of both tags and readers in a large-scale dynamic RFID system, when nearby readers simultaneously try to communicate with tags located within their interrogation range, serious interference problems may occur. Such interferences may cause signal collisions that lead to the reading throughput barrier and degrade the system performance. Although many efforts have been done to maximize the throughput by proposing protocols such as NFRA or more recently GDRA, which is compliant with the EPCglobal and ETSI EN 302 208 standards. However, the above protocols are based on unrealistic assumptions or require additional components with more control packet and perform worse in terms of collisions and latency, etc. In this paper, we explore the use of some well-known Carrier Sense Multiple Access (CSMA) backoff algorithms to improve the existing CSMA-based reader-to-reader anti-collision protocol in dense RFID networks. Moreover, the proposals are compliant with the existing standards. We conduct extensive simulations and compare their performance with the well-known state-of-the-art protocols to show their performance under various criteria. We find that the proposals improvement are highly suitable for maximizing the throughput, efficiency and for minimizing both the collisions and coverage latency in dense RFID Systems

    A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond

    Get PDF
    According to the World Health Organization (WHO), almost 2 billion people each year are infected worldwide with flu-like pathogens including influenza. This is a contagious disease caused by viruses belonging to the family Orthomyxoviridae. Employee absenteeism caused by flu infection costs hundreds of millions of dollars every year. To successfully treat influenza virus infections, detection of the virus during the initial development phase of the infection is critical, when tens to hundreds of virus-associated molecules are present in the patient’s pharynx. In this study, we describe a novel universal diamond biosensor, which enables the specific detection of the virus at ultralow concentrations, even before any clinical symptoms arise. A diamond electrode is surface-functionalized with polyclonal anti-M1 antibodies, which then serve to identify the universal biomarker for the influenza virus, M1 protein. The absorption of the M1 protein onto anti-M1 sites of the electrode change its electrochemical impedance spectra. We achieved a limit of detection of 1 fg/ml in saliva buffer for the M1 biomarker, which corresponds to 5–10 viruses per sample in 5 minutes. Furthermore, the universality of the assay was confirmed by analyzing different strains of influenza A virus
    corecore