31 research outputs found

    Proton translocating nicotinamide nucleotide transhydrogenase from E. coli. Mechanism of action deduced from its structural and catalytic properties11This review is dedicated to the memory of Professor Lars Ernster.

    Get PDF
    AbstractTranshydrogenase couples the stereospecific and reversible transfer of hydride equivalents from NADH to NADP+ to the translocation of proton across the inner membrane in mitochondria and the cytoplasmic membrane in bacteria. Like all transhydrogenases, the Escherichia coli enzyme is composed of three domains. Domains I and III protrude from the membrane and contain the binding site for NAD(H) and NADP(H), respectively. Domain II spans the membrane and constitutes at least partly the proton translocating pathway. Three-dimensional models of the hydrophilic domains I and III deduced from crystallographic and NMR data and a new topology of domain II are presented. The new information obtained from the structures and the numerous mutation studies strengthen the proposition of a binding change mechanism, as a way to couple the reduction of NADP+ by NADH to proton translocation and occurring mainly at the level of the NADP(H) binding site

    A short regulatory domain restricts glycerol transport through yeast Fps1p

    Get PDF
    The controlled export of solutes is crucial for cellular adaptation to hypotonic conditions. In the yeast Saccharomyces cerevisiae glycerol export is mediated by Fpslp, a member of the major intrinsic protein (MIP) family ]of channel proteins. Here we describe a short regulatory domain that restricts glycerol transport through Fpslp. This domain is required for retention of cellular glycerol under hypertonic stress and hence acquisition of osmotolerance. It is located in the N-terminal cytoplasmic extension close to the first transmembrane domain. Several residues within that domain and its precise position are critical for channel control while the proximal residues 13-215 of the N-terminal extension are not required. The sequence of the regulatory domain and its position are perfectly conserved in orthologs from other yeast species. The regulatory domain has an amphiphilic character, and structural predictions indicate that it could fold back into the membrane bilayer. Remarkably, this domain has structural similarity to the channel forming loops B and E of Fpslp and other glycerol facilitators. Intragenic second-site suppressor mutations of the sensitivity to high osmolarity conferred by truncation of the regulatory domain caused diminished glycerol transport, confirming that elevated channel activity is the cause of the osmosensitive phenotype

    Analysis of the pore of the unusual major intrinsic protein channel, yeast Fps1p

    Get PDF
    Fps1p is a glycerol efflux channel from Saccharomyces cerevisiae. In this atypical major intrinsic protein neither of the signature NPA motifs of the family, which are part of the pore, is preserved. To understand the functional consequences of this feature, we analyzed the pseudo-NPA motifs of Fps1p by site-directed mutagenesis and assayed the resultant mutant proteins in vivo. In addition, we took advantage of the fact that the closest bacterial homolog of Fps1p, Escherichia coli GlpF, can be functionally expressed in yeast, thus enabling the analysis in yeast cells of mutations that make this typical major intrinsic protein more similar to Fps1p. We observed that mutations made in Fps1p to "restore" the signature NPA motifs did not substantially affect channel function. In contrast, when GlpF was mutated to resemble Fps1p, all mutants had reduced activity compared with wild type. We rationalized these data by constructing models of one GlpF mutant and of the transmembrane core of Fps1p. Our model predicts that the pore of Fps1p is more flexible than that of GlpF. We discuss the fact that this may accommodate the divergent NPA motifs of Fps1p and that the different pore structures of Fps1p and GlpF may reflect the physiological roles of the two glycerol facilitators

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2—Implications for their role in disease, especially cancer

    Full text link

    Preface

    No full text

    Preface

    Get PDF

    Gothenburg special issue: Molecules of Life

    No full text
    corecore