243 research outputs found
Uranium stripping from tri-n-butyl phosphate by hydrogen peroxide solutions
The processes of uranium stripping from 30% tri-n-butyl phosphate (TBP) in "odorless" kerosene by H2O2 solutions both with and without NH4OH added were investigated in the temperature range of 20-50 C and with a volumetric ratio of 1 between the organic and aqueous phases. The uranium was selectively precipitated in the form of uranium peroxide during stripping from the organic phase by hydrogen peroxide. The stripping of uranium increased with increasing H2O2 content, increasing temperature and increasing concentration of NH3 in the range of 0-15 g/L. The use of a heated solution (40 C) that contained 4 mol H 2O2/mol U and NH3 12 g/L resulted in 99.7% of the uranium being stripped from TBP in the form of uranium peroxide. The uranium peroxide obtained by stripping is a highly pure product that exists in two different hydrated forms: UO4в̂™4H2O (92 mass %) and UO4в̂™2H2O. The mean particle diameter was 20.75 μm. The effect of hydrogen peroxide on the organic phase was studied by IR spectroscopy. No structural changes in TBP were observed after 30 cycles of extraction/stripping; thus, the use of hydrogen peroxide in this application is unrestricted. © 2013 Elsevier B.V
The ways to improve the energy conversion efficiency in erbium-doped Gd 2 O 3 nanoparticles
The basic requirements for the crystal lattice and defectiveness of Gd 2 O 3 matrix as well as for the concentration of Er 3+ dopants to achieve the enhanced parameters of energy conversion in Gd 2 O 3 :Er nanoparticles are summarized. The obtained data allow to optimize and improve the functional characteristics of Gd 2 O 3 :Er-based down-conversion layers applying in solar cells. © 2018 Institute of Physics Publishing. All rights reserved.The work has been funded by the Ministry of Education and Science of the Russian Federation (Government task №3.1485.2017/4.6)
Thermally stable composite system Al2O3-Ce 0.75Zr0.25O2 for automotive three-way catalysts
Present-day three-way catalysts operate in contact with exhaust gases whose temperature is as high as >1000 C, so the problem of developing thermally stable catalytic compositions is still topical. A series of Al2O 3-Ce0.75Zr0.25O2 composites containing 0, 10, 25, and 50 wt % Al2O3 has been synthesized by direct precipitation. The as-prepared composites and those calcined in air at 1000 and 1100 C have been characterized by BET, X-ray diffraction, transmission electron microscopy, and temperature-programmed reduction methods. The composites aged at 1050 C in a 2% O2 + 10% H2O + 88% N2 atmosphere have been used to prepare monolith catalysts, and the oxygen storage capacity (OSC) of the latter has been measured using a gas analysis setup. As the proportion of Al2O 3 in the composite is raised, the mixing uniformity and degree of dispersion of Ce x Zr1-x O2-δ particles increase, their chemical composition becomes homogeneous, and the amount of cerium involved in oxidation and reduction increases. The composite containing 50 wt % Al2O3 is a mixture of Ce x Zr 1-x O2-δ and Al2O3 crystallites, whose size is practically unaffected by calcination. The (Pt/Al2O3 + Al2O3-Ce 0.75Zr0.25O2) based on this composite has the highest OSC and is the most active. For this reason, full-scale testing of this catalyst is recommended. © 2013 Pleiades Publishing, Ltd
Spectroscopic Study of Five-Coordinated Thermal Treated Alumina Formation: FTIR and NMR Applying
This work represents research into materials designed to improve the environment. The study was carried out on aluminum hydroxide xerogels and alumina catalysts obtained by the Controlled Double Jet Precipitation (CDJP) process at different pH values. It has been shown that the pH of the CDJP process determines the content of aluminum-bound nitrate ions in the aluminum hydroxide. These ions are removed at a higher temperature than the decomposition of ammonium nitrate. The high content of aluminum-bound nitrate ions determines the structural disorder of the alumina and the high content of the penta-coordinated alumina catalyst. © 2023 by the authors
Charge fluctuations in open chaotic cavities
We present a discussion of the charge response and the charge fluctuations of
mesoscopic chaotic cavities in terms of a generalized Wigner-Smith matrix. The
Wigner-Smith matrix is well known in investigations of time-delay of quantum
scattering. It is expressed in terms of the scattering matrix and its
derivatives with energy. We consider a similar matrix but instead of an energy
derivative we investigate the derivative with regard to the electric potential.
The resulting matrix is then the operator of charge. If this charge operator is
combined with a self-consistent treatment of Coulomb interaction, the charge
operator determines the capacitance of the system, the non-dissipative
ac-linear response, the RC-time with a novel charge relaxation resistance, and
in the presence of transport a resistance that governs the displacement
currents induced into a nearby conductor. In particular these capacitances and
resistances determine the relaxation rate and dephasing rate of a nearby qubit
(a double quantum dot). We discuss the role of screening of mesoscopic chaotic
detectors. Coulomb interaction effects in quantum pumping and in photon
assisted electron-hole shot noise are treated similarly. For the latter we
present novel results for chaotic cavities with non-ideal leads.Comment: 29 pages, 13 figures;v.2--minor changes; contribution for the special
issue of J. Phys. A on "Trends in Quantum Chaotic Scattering
On the existence of supergravity duals to D1--D5 CFT states
We define a metric operator in the 1/2-BPS sector of the D1-D5 CFT, the
eigenstates of which have a good semi-classical supergravity dual; the
non-eigenstates cannot be mapped to semi-classical gravity duals. We also
analyse how the data defining a CFT state manifests itself in the gravity side,
and show that it is arranged into a set of multipoles. Interestingly, we find
that quantum mechanical interference in the CFT can have observable
manifestations in the semi-classical gravity dual. We also point out that the
multipoles associated to the normal statistical ensemble fluctuate wildly,
indicating that the mixed thermal state should not be associated to a
semi-classical geometry.Comment: 22 pages, 2 figures. v2 : references added, typos correcte
A Seesaw Mechanism in the Higgs Sector
In this letter we revisit the seesaw Higgs mechanism. We show how a seesaw
mechanism in a two Higgs doublets model can trigger the electroweak symmetry
breaking if at least one of the eigenvalues of the squared mass matrix is
negative. We then consider two special cases of interest. In the decoupling
scenario, there is only one scalar degree of freedom in the low energy regime.
In the degenerate scenario, all five degrees of freedom are in the low energy
regime and will lead to observables effects at the LHC. Furthermore, in that
scenario, it is possible to impose a discrete symmetry between the doublets
that makes the extra neutral degrees of freedom stable. These are thus viable
dark matter candidates. We find an interesting relation between the electroweak
symmetry breaking mechanism and dark matter.Comment: 10 page
SYNTHESIS OF STABILIZED ALUMINUM OXIDE FOR APPLICATION AS A SUPPORT FOR AUTOMOBILE CATALYST
Today in Russia there is no production of gamma-aluminum oxide for use as part of automobile catalysts. Our technology makes it possible to obtain lanthanum-modified aluminum oxide with the required high specific surface area, thermal stability and developed porous structure.The authors express their gratitude to the company "Ecoalliance" LLC and personally to engineer E.O. Baksheev for assistance in testing samples as part of automotive catalysts. Grant support for the research was provided by the state non-profit organization "Foundation for the Promotion of Innovation"
Bounds for State Degeneracies in 2D Conformal Field Theory
In this note we explore the application of modular invariance in
2-dimensional CFT to derive universal bounds for quantities describing certain
state degeneracies, such as the thermodynamic entropy, or the number of
marginal operators. We show that the entropy at inverse temperature 2 pi
satisfies a universal lower bound, and we enumerate the principal obstacles to
deriving upper bounds on entropies or quantum mechanical degeneracies for fully
general CFTs. We then restrict our attention to infrared stable CFT with
moderately low central charge, in addition to the usual assumptions of modular
invariance, unitarity and discrete operator spectrum. For CFT in the range
c_left + c_right < 48 with no relevant operators, we are able to prove an upper
bound on the thermodynamic entropy at inverse temperature 2 pi. Under the same
conditions we also prove that a CFT can have a number of marginal deformations
no greater than ((c_left + c_right) / (48 - c_left - c_right)) e^(4 Pi) - 2.Comment: 23 pages, LaTeX, minor change
- …