9 research outputs found

    Radiation from a charge circulating inside a waveguide with dielectric filling

    Get PDF
    The emitted power of the radiation from a charged particle moving uniformly on a circle inside a cylindrical waveguide is considered. The expressions for the energy flux of the radiation passing through the waveguide cross-section are derived for both TE and TM waves. The results of the numerical evaluation are presented for the number of emitted quanta depending on the waveguide radius, the radius of the charge rotation orbit and dielectric permittivity of the filling medium. These results are compared with the corresponding quantities for the synchrotron radiation in a homogeneous medium.Comment: 10 pages, Latex, four EPS figure

    Synchrotron radiation from a charge moving along a helical orbit inside a dielectric cylinder

    Full text link
    The radiation emitted by a charged particle moving along a helical orbit inside a dielectric cylinder immersed into a homogeneous medium is investigated. Expressions are derived for the electromagnetic potentials, electric and magnetic fields, and for the spectral-angular distribution of radiation in the exterior medium. It is shown that under the Cherenkov condition for dielectric permittivity of the cylinder and the velocity of the particle image on the cylinder surface, strong narrow peaks are present in the angular distribution for the number of radiated quanta. At these peaks the radiated energy exceeds the corresponding quantity for a homogeneous medium by some orders of magnitude. The results of numerical calculations for the angular distribution of radiated quanta are presented and they are compared with the corresponding quantities for radiation in a homogeneous medium. The special case of relativistic charged particle motion along the direction of the cylinder axis with non-relativistic transverse velocity (helical undulator) is considered in detail. Various regimes for the undulator parameter are discussed. It is shown that the presence of the cylinder can increase essentially the radiation intensity.Comment: 18 pages, 8 EPS figure

    Electromagnetic field and radiation for a charge moving along a helical trajectory inside a waveguide with dielectric filling

    Full text link
    We investigate the electromagnetic field generated by a point charge moving along a helical trajectory inside a circular waveguide with conducting walls filled by homogeneous dielectric. The parts corresponding to the radiation field are separated and the formulae for the radiation intensity are derived for both TE and TM waves. It is shown that the main part of the radiated quanta is emitted in the form of the TE waves. Various limiting cases are considered. The results of the numerical calculations show that the insertion of the waveguide provides an additional mechanism for tuning the characteristics of the emitted radiation by choosing the parameters of the waveguide and filling medium.Comment: 17 pages, 9 figures, discussion, graphs, and references adde

    A convolution integral representation of the thermal Sunyaev-Zel'dovich effect

    Get PDF
    Analytical expressions for the non-relativistic and relativistic Sunyaev-Zel'dovich effect (SZE) are derived by means of suitable convolution integrals. The establishment of these expressions is based on the fact that the SZE disturbed spectrum, at high frequencies, possesses the form of a Laplace transform of the single line distortion profile (structure factor). Implications of this description of the SZE related to light scattering in optically thin plasmas are discussed.Comment: 11 pages, 2 figures. Accepted for publication in J. Phys.

    A Study of B0 - anti-B0 mixing using semileptonic decays of B hadrons produced from Z0

    Get PDF
    The B0-B̄0 mixing was studied by using about 250000 hadronic decays of the Z0,_collected with the DELPHI detector at LEP. With 1665 dilepton events, the probability for a b quark to become a b̄ before decaying was found to be χ = 0.121-0.040 0.044 ± 0.017. The semileptonic branching ratio of the b was measured from the dilepton and single lepton events and found to be Br(b → l) = (10.0 ± 0.7 ± 0.7)%.0SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Packaging

    No full text
    corecore