45 research outputs found

    A comprehensive high resolution 3D P- and S-wave velocity model for the Alpine mountain chain using local earthquake data: Constraining crustal structure, lithologies and mountain-building processes

    Get PDF
    Based on the unprecedented amount of densly recorded seismic waveform data and recent advances in machine learning techniques the main objective of this project was the computation of a comprehensive high resolution 3D P- and S-wave velocity model for the Alpine region including station correction terms. Additionally, event locations and associated uncertainties as well as the automatically determined seismic arrival times should be published. The 3D crustal model delivers travel time correction terms for teleseimic tomography studies and thus sharpen the image of subducted slabs in the upper mantle. We used "SeisBench - A toolbox for machine learning in seismology" to assess the performance of several deep-neural-network based seismic picking algorithms and find PhaseNet to be most suitable. In order to consistently remove outliers from the P- and S- phase pick catalog we developed a purely data-driven pre-inversion pick selection method. We relocated a subset of 384 events while simultaneously inverting for the 1D P- & S-wave velocity structure including station corrections using the established VELEST as well as the recently developed McMC algorithms. This model yields the first consistent travel time based 1D S-wave model of the Greater Alpine region facilitating computation of synthetic travel times and the inclusion of S-phases during the localization process. Furthermore, it yields the starting model for the final 3D velocity model which is based on records from more than 3000 events on more than 1100 seismic broadband stations. Comparing our hypocentres with event locations from other studies indicates a horizontal and vertical accuracy of ~2km and ~6km, respectively, when using a 1D velocity model and station correction terms for the Greater Alpine region. Large scale features of the resulting velocity model are in good agreement with previous studies. The Molasse and Po basin in the northern and southern foreland, respectively, are showing up as prominent low velocity zones in the uppermost crust. Generally, the velocity isolines in the lower crust are in rather good agreement with Moho maps from previous studies and ambient noise tomographies

    Combined seismic and borehole investigation of the deep granite weathering structure—Santa Gracia Reserve case in Chile

    Get PDF
    Imaging the critical zone at depth, where intact bedrock transforms into regolith, is critical in understanding the interaction between geological and biological processes. We acquired a 500 m‐long near‐surface seismic profile to investigate the weathering structure in the Santa Gracia National Reserve, Chile, which is located in a granitic environment in an arid climate. Data processing comprised the combination of two seismic approaches: (1) body wave tomography and (2) multichannel analysis of surface wave (MASW) with Bayesian inversion. This allowed us to derive P‐wave and S‐wave velocity models down to 90 and 70 m depth, respectively. By calibrating the seismic results with those from an 87 m‐deep borehole that is crossed by the profile. We identified the boundaries of saprolite, weathered bedrock, and bedrock. These divisions are indicated in the seismic velocity variations and refer to weathering effects at depth. The thereby determined weathering front in the borehole location can be traced down to 30 m depth. The modelled lateral extent of the weathering front, however, cannot be described by an established weathering front model. The discrepancies suggest a more complex interaction between different aspects such as precipitation and topography in controlling the weathering front depth

    3D shear wave velocity imaging of the subsurface structure of granite rocks in the arid climate of Pan de AzĂșcar, Chile, revealed by Bayesian inversion of HVSR curves

    Get PDF
    Seismic methods are emerging as efficient tools for imaging the subsurface to investigate the weathering zone. The structure of the weathering zone can be identified by differing shear wave velocities as various weathering processes will alter the properties of rocks. Currently, 3D subsurface modelling of the weathering zone is gaining increasing importance as results allow the identification of the weathering imprint in the subsurface not only from top to bottom but also in three dimensions. We investigated the 3D weathering structure of monzogranite bedrock near the Pan de AzĂșcar National Park (Atacama Desert, northern Chile), where the weathering is weak due to the arid climate conditions. We set up an array measurement that records seismic ambient noise, which we used to extract the horizontal-to-vertical spectral ratio (HVSR) curves. The curves were then used to invert for 1D shear wave velocity (Vs) models, which we then used to compile a pseudo-3D model of the subsurface structure in our study area. To invert the 1D Vs model, we applied a transdimensional hierarchical Bayesian inversion scheme, allowing us to invert the HVSR curve with minimal prior information. The resulting 3D model allowed us to image the granite gradient from the surface down to ca. 50 m depth and confirmed the presence of dikes of mafic composition intruding the granite. We identified three main zones of fractured granite, altered granite, and the granite bedrock in addition to the mafic dikes with relatively higher Vs. The fractured granite layer was identified with Vs of 1.4 km s−1 at 30–40 m depth, while the granite bedrock was delineated with Vs of 2.5 km s−1 and a depth range between 10 and 50 m depth. We compared the resulting subsurface structure to other sites in the Chilean coastal cordillera located in various climatic conditions and found that the weathering depth and structure at a given location depend on a complex interaction between surface processes such as precipitation rate, tectonic uplift and fracturing, and erosion. Moreover, these local geological features such as the intrusion of mafic dikes can create significant spatial variations to the weathering structure and therefore emphasize the importance of 3D imaging of the weathering structure. The imaged structure of the subsurface in Pan de AzĂșcar provides the unique opportunity to image the heterogeneities of a rock preconditioned for weathering but one that has never experienced extensive weathering given the absence of precipitation.</p

    Shear-wave velocity imaging of weathered granite in La Campana (Chile) from Bayesian inversion of micro-tremor H/V spectral ratios

    Get PDF
    Subsurface imaging of the regolith layer is an important tool for weathering zone characterization. For example, the extent of bedrock modification by weathering processes can be modelled by means of differing seismic velocities. We acquired a 360 m-long seismic profile in central Chile to characterise weathering at a semi-arid site. We used 87 3-component geophones, which continuously recorded ambient seismic noise for three days. The seismic line was centered at an 88 m deep borehole, providing core and downhole logging data for calibration. We extract Horizontal-to-Vertical Spectral Ratio (HVSR) curves along the seismic line to image the subsurface. Temporal analysis of the HVSR curves shows that the ambient noise vibrations recorded during the nighttime provide more stable HVSR curves. The trans-dimensional Bayesian Markov chain Monte Carlo (McMC) approach was used to invert the micro-tremor HVSR curves at each station to reconstruct 1D shear-wave velocity (Vs) models. The resulting individual 1D Vs models were merged to create a 2D Vs model along the linear seismic array in La Campana. The resulting Vs model shows an increase from 0.85 km/s at the surface to ca. 2.5 km/s at 100 m depth. We use the interface probability as a by-product of the Bayesian inversion to apply a more data-driven approach in identifying the different weathering layers. This method identified the boundary between saprolite and fractured bedrock at 42 m depth at the borehole, as evidenced by the interpretation of downhole logging data such as magnetic susceptibility. The resulting 2D Vs model of this site in Mediterranean climate shows a strong correlation between the interpreted weathering front at around 90-m depth and a higher precipitation rate in the study site compared to arid sites. The horizontal alignment of the weathering front indicates a correlation between the weathering front depth with topography and fractures in the bedrock

    Near-shore permafrost degradation in Siberia

    Get PDF
    Ice-rich permafrost coasts in the Arctic are susceptible to a variety of changing environmental factors, all of which currently point to increasing coastal erosion rates and mass fluxes of sediment and carbon to the shallow arctic shelf seas. Coastal erosion and flooding inundate terrestrial permafrost with seawater and create submarine permafrost. Permafrost begins to warm under marine conditions, which can destabilize the sea floor and may release greenhouse gases. The rate and spatial distribution of subsea permafrost degradation in the Laptev, East Siberian and Chukchi seas, which together comprise more than half of the Arctic Ocean continental shelf, remain poorly explored. We report on the transition of terrestrial to subsea permafrost at four coastal sites in the Laptev Sea: Cape Mamontov Klyk in the western Laptev Sea, and Buor Khaya Peninsula, Muostakh Island and the Bykovsky Peninsula in the central Laptev Sea. We use coastal erosion rates from about the last 70 years to estimate the period of inundation at these sites. Combined with direct (drilling and temperature) and indirect (geophysical) observations of thaw depths of ice-bonded permafrost, we estimate recent degradation rates of permafrost over the past centuries. Based on these observations, the unfrozen sediment layer overlying ice-bonded permafrost increased from less than a meter at the shoreline to over 30 m below seabed with increasing distance from the shoreline at our study sites, with high spatial variability between and within sites. Observed temperatures of the sediment ranged from -5 °C to positive temperatures. In coastal sediments, it is difficult to establish an age-depth model, making corroboration of estimated degradation rates a challenge. Nonetheless, as the thickness of the unfrozen sediment layer increases over time, the vertical thermal and salt concentration gradients decrease, slowing the downward heat and mass fluxes responsible for degradation. High sedimentation rates and ice contents probably stabilize subsea permafrost. We suggest that permafrost degradation relevant to gas flow is likely to have occurred where permafrost warmed prior to inundation

    Subsurface Geometry of the San Andreas Fault in Southern California: Results from the Salton Seismic Imaging Project (SSIP) and Strong Ground Motion Expectations

    Get PDF
    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∌2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∌50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (T<1  s) shaking is increased locally by up to a factor of 2 on the hanging wall and is decreased locally by up to a factor of 2 on the footwall, compared to shaking calculated for a vertical fault

    Images of Crust Beneath Southern California Will Aid Study of Earthquakes and Their Effects

    Get PDF
    The Whittier Narrows earthquake of 1987 and the Northridge earthquake of 1991 highlighted the earthquake hazards associated with buried faults in the Los Angeles region. A more thorough knowledge of the subsurface structure of southern California is needed to reveal these and other buried faults and to aid us in understanding how the earthquake-producing machinery works in this region

    Understanding earthquake hazards in southern California - the "LARSE" project - working toward a safer future for Los Angeles

    Get PDF
    The Los Angeles region is underlain by a network of active faults, including many that are deep and do not break the Earth’s surface. These hidden faults include the previously unknown one responsible for the devastating January 1994 Northridge earthquake, the costliest quake in U.S. history. So that structures can be built or strengthened to withstand the quakes that are certain in the future, the Los Angeles Region Seismic Experiment (LARSE) is locating hidden earthquake hazards beneath the region to help scientists determine where the strongest shaking will occur

    Deep crustal profile across the southern Karoo Basin and Beattie Magnetic Anomaly, South Africa: Integrated interpretation with tectonic implications

    Get PDF
    Two geophysical onshore-offshore lines on the southern margin of Africa form the Agulhas-Karoo Geophysical Transect (AKGT) and cross prominent geological features such as the Karoo Basin, Cape Fold Belt (CFB) and the Beattie Magnetic Anomaly (BMA). Geophysical data acquired along this AKGTransect between 2004 and 2007 within the Inkaba yeAfrica (lyA) framework, provide the platform for constructing a deep crustal section (IyA-200501) for the centre 100 km of the western AKGT-transect in order to resolve these features at depth. We present a detailed deep crustal model constructed from the joint interpretation of: i. archive data comprising surface geology, aeromagnetic data, nearby deep boreholes, teleseismic receiver functions and regional seismic reflection profiles, and ii. line coincident newly acquired high-resolution geophysical data consisting of near vertical seismic reflection data, shallow P- and S-wave velocity data, wide-angle refraction data, high resolution magnetotelluric data and impedance spectroscopy measurements on borehole samples. Our model differentiates four components in the up to 45 km thick crust: 1. a ~2 to 5 km thick folded Karoo Supergroup, disrupted by low-angle thrust faults rooted in a zone of local décollements in the lower Ecca Group and resting paraconformably on 2. a continuous undeformed sub-horizontal ~1.5 to 10 km thick wedge of the Cape Supergroup (CSG). This CSG wedge stretches from the Escarpment in the north to the tectonic front of the CFB in the south, and rests on an unconformity that dips about three degrees to the south. The angular unconformity is interpreted as an erosional peneplain that separates the CSG wedge from component 3. the ~13 to 21 km mid-crust basement below. The mid-crust contains a distinct north-dipping seismic fabric, here interpreted as ~1.4 to 1.0 Ga Mesoproterozoic Namaqua-Natal Metamorphic Belt (NNMB) crust. A south-dipping mid-crustal detachment, interpreted as a ductile thrust zone, separates the mid-crust from component 4. a highly reflective ~10 to 24 km thick lower crust. The latter is interpreted as an older Palaeoproterozoic section of the NNMB (or even Archean cratonic basement), and bounded by a ~2 to 5 km thick, highly reflective bottom layer below that lies sub- parallel to a clear Moho. This bottom layer is interpreted as a mafic underplate, metasomatic reaction zone, or lower-crust to mantle transition zone. Collectively the seismic reflection and wide-angle refraction data support an interpretation that the NNMB mid-crustal layer contains the BMA source, possibly connected to two zones of strong reflectivity: a ~10 to 12 km wide northern zone and a ~5 to 7 km wide southern zone, both about 5 km thick and 7 to 8 km below surface. We interpret the BMA source to be at least in part, a Namaqua-like massive to disseminated, deformed/metamorphosed stratiform sulphide-magnetite ore body with metasomatic overprint. The seismic reflection and -refraction data support an interpretation that a Pan-African suture zone at the BMA is absent and that instead, the NNMB continues below the CFB tectonic front, probably up to the continental margin and the Agulhas Fracture Zone. The seismic reflection data also supports a thin-skinned tectonic thrust model for the evolution of the CFB without significant fore-deep stratigraphic thickening of the Karoo Basin strata. A compatible tectonic model implies a Palaeozoic collision orogen setting, coupled to a south verging subduction zone much farther south of the CFB. Similarly, the geophysical data support a south dipping subduction zone during the amalgamation of the NNMB in the Mesoproterozoic. Current reconstructions of the Rodinia supercontinent link the NNMB and the Grenville Province of North America across the Grenville-Kibaran orogen. Our seismic section tests this reconstruction through a direct comparison with seismic profiles on the opposite flank of the orogen. Although the once adjacent continental blocks are now 1000s of kilometres apart, the seismic images show a good correlation and support the reconstruction
    corecore