21 research outputs found

    Valid and reliable instruments for arm-hand assessment at ICF activity level in persons with hemiplegia: a systematic review

    Get PDF
    Contains fulltext : 110141.pdf (publisher's version ) (Open Access)BACKGROUND: Loss of arm-hand performance due to a hemiparesis as a result of stroke or cerebral palsy (CP), leads to large problems in daily life of these patients. Assessment of arm-hand performance is important in both clinical practice and research. To gain more insight in e.g. effectiveness of common therapies for different patient populations with similar clinical characteristics, consensus regarding the choice and use of outcome measures is paramount. To guide this choice, an overview of available instruments is necessary. The aim of this systematic review is to identify, evaluate and categorize instruments, reported to be valid and reliable, assessing arm-hand performance at the ICF activity level in patients with stroke or cerebral palsy. METHODS: A systematic literature search was performed to identify articles containing instruments assessing arm-hand skilled performance in patients with stroke or cerebral palsy. Instruments were identified and divided into the categories capacity, perceived performance and actual performance. A second search was performed to obtain information on their content and psychometrics. RESULTS: Regarding capacity, perceived performance and actual performance, 18, 9 and 3 instruments were included respectively. Only 3 of all included instruments were used and tested in both patient populations. The content of the instruments differed widely regarding the ICF levels measured, assessment of the amount of use versus the quality of use, the inclusion of unimanual and/or bimanual tasks and the inclusion of basic and/or extended tasks. CONCLUSIONS: Although many instruments assess capacity and perceived performance, a dearth exists of instruments assessing actual performance. In addition, instruments appropriate for more than one patient population are sparse. For actual performance, new instruments have to be developed, with specific focus on the usability in different patient populations and the assessment of quality of use as well as amount of use. Also, consensus about the choice and use of instruments within and across populations is needed

    Valid and reliable instruments for arm-hand assessment at ICF activity level in persons with hemiplegia: a systematic review

    No full text
    Background: Loss of arm-hand performance due to a hemiparesis as a result of stroke or cerebral palsy (CP), leads to large problems in daily life of these patients. Assessment of arm-hand performance is important in both clinical practice and research. To gain more insight in e. g. effectiveness of common therapies for different patient populations with similar clinical characteristics, consensus regarding the choice and use of outcome measures is paramount. To guide this choice, an overview of available instruments is necessary. The aim of this systematic review is to identify, evaluate and categorize instruments, reported to be valid and reliable, assessing arm-hand performance at the ICF activity level in patients with stroke or cerebral palsy. Methods: A systematic literature search was performed to identify articles containing instruments assessing arm-hand skilled performance in patients with stroke or cerebral palsy. Instruments were identified and divided into the categories capacity, perceived performance and actual performance. A second search was performed to obtain information on their content and psychometrics. Results: Regarding capacity, perceived performance and actual performance, 18, 9 and 3 instruments were included respectively. Only 3 of all included instruments were used and tested in both patient populations. The content of the instruments differed widely regarding the ICF levels measured, assessment of the amount of use versus the quality of use, the inclusion of unimanual and/or bimanual tasks and the inclusion of basic and/or extended tasks. Conclusions: Although many instruments assess capacity and perceived performance, a dearth exists of instruments assessing actual performance. In addition, instruments appropriate for more than one patient population are sparse. For actual performance, new instruments have to be developed, with specific focus on the usability in different patient populations and the assessment of quality of use as well as amount of use. Also, consensus about the choice and use of instruments within and across populations is needed

    Placement of the sensor devices.

    No full text
    <p>A) placement on the dominant arm-hand and chest of healthy participants, B) bilateral placement on the arms, hands and chest of the stroke patient, C) top view of the placement of the sensor devices on the hand.</p

    Identification of the activities ‘drinking’, ‘eating’ and ‘brushing hair’ in a sequence of recordings of multiple standardized daily activities of a stroke patient.

    No full text
    <p>Panel A displays the superimposed signals (63 in total) of a recording of a stroke patient while performing three tasks, namely drinking from a cup, eating with knife and fork and brushing hair. Pattern recognition using an individual template is shown for the tasks ‘drinking’ (Panel B), ‘eating’ (Panel C) and ‘brushing hair’ (Panel D). Pattern recognition with the complete task as template and with the task sub-phases as template are both shown. The black lines (complete task) and coloured lines (task sub-phases) in panels B and C mark the places were the template is recognised in the longer recording.</p

    Schematic overview of the procedure of pattern recognition (1 of the 36 signals is shown).

    No full text
    <p>A) Systematic variation in template window length using linear interpolation, example given of 3 of the in total 17 variations in window length, B) Pattern recognition based on 2D convolution, performed for every template window separately, C) Cross-correlation coefficient functions, calculated during pattern recognition, example given of 3 of the in total 17 cross-correlation coefficient functions. Local maxima were identified per cross-correlation coefficient function (marked with red circle) and local maxima with highest cross-correlation of all cross-correlation functions were identified (marked with red square), D) Overview of epochs where the template is recognized, including start and endpoints (in data points, DP), cross-correlation coefficients and relative window length. Red lines mark the places in the sequence of recordings of multiple standardized daily activities were the template is recognized. DP = data point.</p

    Identification of the activity ‘drinking’ in a sequence of recordings of multiple standardized daily activities of a healthy participant.

    No full text
    <p>Panel A displays the superimposed signals (36 in total) of a recording of an individual while executing three tasks, namely drinking from a cup, eating with knife and fork and brushing hair. Panel B displays the pattern recognition using an individual template and the pattern recognition using a generic template consisting of the mean signal of 30 persons. Both pattern recognition with the complete task as template and task sub-phases as template are shown. The black lines (complete task) and coloured lines (task sub-phases) in Panel B mark the places were the template is recognised in the longer recording.</p

    Procedure for identifying start and endpoints of task repetitions.

    No full text
    <p>The black line represents the summed gyroscope signal of four devices on one person (signal X). The dotted red line represents the threshold. Repetitions were identified using an algorithm making use of a threshold, minimal length of a repetition and minimum distance between two repetitions.</p
    corecore