20 research outputs found
Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi
The response of Alliumcepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R′) and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R′ was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars
Exploring functional variation affecting miRNA and ceRNA regulation in humans
Conference Theme: Integrative Approaches to Understand Allelic FunctionMicroRNA (miRNA) sponges have been shown to function as competing endogenous RNAs (ceRNAs) to regulate the expression of other miRNA targets in the network by sequestering available miRNAs. As the first systematic investigation of the genome-wide genetic effect on ceRNA regulation, we applied multivariate response regression and identified widespread genetic variations that are associated with ceRNA competition using 462 Geuvadis RNA-seq data in multiple human populations. We showed that SNPs in gene 3’UTRs at the miRNA seed binding regions can simultaneously regulate gene expression changes in both cis and trans by the ceRNA mechanism. We termed these loci as endogenous miRNA sponge expression quantitative trait loci or “emsQTLs”, and found that a large number of them were unexplored in conventional eQTL mapping. We identified many emsQTLs are undergoing recent positive selection in different human populations. Using GWAS results, we found that emsQTLs are significantly enriched in traits/diseases associated loci. Functional prediction and prioritization extend our understanding on causality of emsQTL allele in disease pathways. We illustrated that emsQTL can synchronously regulate the expression of tumor suppressor and oncogene through ceRNA competition in angiogenesis. Together these results provide a distinct catalog and characterization of functional noncoding regulatory variants that control ceRNA crosstalk.link_to_OA_fulltex
Sexual selection enables long-term coexistence despite ecological equivalence
Empirical data indicate that sexual preferences are critical for maintaining species boundaries, yet theoretical work has suggested that, on their own, they can have only a minimal role in maintaining biodiversity. This is because long-term coexistence within overlapping ranges is thought to be unlikely in the absence of ecological differentiation. Here we challenge this widely held view by generalizing a standard model of sexual selection to include two ubiquitous features of populations with sexual selection: spatial variation in local carrying capacity, and mate-search costs in females. We show that, when these two features are combined, sexual preferences can single-handedly maintain coexistence, even when spatial variation in local carrying capacity is so slight that it might go unnoticed empirically. This theoretical study demonstrates that sexual selection alone can promote the long-term coexistence of ecologically equivalent species with overlapping ranges, and it thus provides a novel explanation for the maintenance of species diversity