36 research outputs found

    A modified rat model of hindlimb ischemia for augmentation and functional measurement of arteriogenesis

    No full text
    Arteriogenesis (collateral artery development) is an adaptive pathway critical for salvage of tissue in the setting of arterial occlusion. Rodent models of arteriogenesis typically involve an experimental occlusion (ligation) of a hindlimb artery and then rely on indirect measures such as laser Doppler perfusion imaging to assess blood flow recovery. Unfortunately, the more commonly utilized measures of distal tissue perfusion at rest are unable to account for hemodynamic and vasoactive variables and thus provide an incomplete assessment of collateral network capacity. We provide a detailed description of modifications to the commonly used model of femoral artery ligation. These serve to alter and then directly assess collateral network’s hemodynamic capacity. By incorporating an arteriovenous fistula distal to the arterial ligation, arterial growth is maximized. Hindlimb perfusion may be isolated to measure minimum resistance of flow around the arterial occlusion, which provides a direct measure of collateral network capacity. Our results reinforce that arteriogenesis is driven by hemodynamic variables, and it can be reliably augmented and measured in absolute terms. Using these modifications to a widely used model, functional arteriogenesis may be more directly studied

    TLR2 and TLR4 mediate differential responses to limb ischemia through MyD88-dependent and independent pathways.

    Get PDF
    The danger signal HMGB1 is released from ischemic myocytes, and mediates angiogenesis in the setting of hindlimb ischemia. HMGB1 is a ligand for innate immune receptors TLR2 and TLR4. While both TLR2 and TLR4 signal through myeloid differentiation factor 88 (MyD88), TLR4 also uniquely signals through TIR-domain-containing adapter-inducing interferon-β (TRIF). We hypothesize that TLR2 and TLR4 mediate ischemic myocyte regeneration and angiogenesis in a manner that is dependent on MyD88 signaling.Mice deficient in TLR2, TLR4, MyD88 and TRIF underwent femoral artery ligation in the right hindlimb. Laser Doppler perfusion imaging was used to assess the initial degree of ischemia and the extent of perfusion recovery. Muscle regeneration, necrosis and fat replacement at 2 weeks post-ligation were assessed histologically and vascular density was quantified by immunostaining. In vitro, endothelial tube formation was evaluated in matrigel in the setting of TLR2 and TLR4 antagonism.While control and TLR4 KO mice demonstrated prominent muscle regeneration, both TLR2 KO and TRIF KO mice exhibited marked necrosis with significant inflammatory cell infiltrate. However, MyD88 KO mice had a minimal response to the ischemic insult with little evidence of injury. This observation could not be explained by differences in perfusion recovery which was similar at two weeks in all the strains of mice. TLR2 KO mice demonstrated abnormal vessel morphology compared to other strains and impaired tube formation in vitro.TLR2 and TRIF signaling are necessary for muscle regeneration after ischemia while MyD88 may instead mediate muscle injury. The absence of TLR4 did not affect muscle responses to ischemia. TLR4 may mediate inflammatory responses through MyD88 that are exaggerated in the absence of TLR2. Additionally, the actions of TLR4 through TRIF may promote regenerative responses that are required for recovery from muscle ischemia

    Elastic Laminar Reorganization Occurs with Outward Diameter Expansion during Collateral Artery Growth and Requires Lysyl Oxidase for Stabilization

    No full text
    When a large artery becomes occluded, hemodynamic changes stimulate remodeling of arterial networks to form collateral arteries in a process termed arteriogenesis. However, the structural changes necessary for collateral remodeling have not been defined. We hypothesize that deconstruction of the extracellular matrix is essential to remodel smaller arteries into effective collaterals. Using multiphoton microscopy, we analyzed collagen and elastin structure in maturing collateral arteries isolated from ischemic rat hindlimbs. Collateral arteries harvested at different timepoints showed progressive diameter expansion associated with striking rearrangement of internal elastic lamina (IEL) into a loose fibrous mesh, a pattern persisting at 8 weeks. Despite a 2.5-fold increase in luminal diameter, total elastin content remained unchanged in collaterals compared with control arteries. Among the collateral midzones, baseline elastic fiber content was low. Outward remodeling of these vessels with a 10–20 fold diameter increase was associated with fractures of the elastic fibers and evidence of increased wall tension, as demonstrated by the straightening of the adventitial collagen. Inhibition of lysyl oxidase (LOX) function with β-aminopropionitrile resulted in severe fragmentation or complete loss of continuity of the IEL in developing collaterals. Collateral artery development is associated with permanent redistribution of existing elastic fibers to accommodate diameter growth. We found no evidence of new elastic fiber formation. Stabilization of the arterial wall during outward remodeling is necessary and dependent on LOX activity

    The Role of Elevated Wall Shear Stress in Progression of Pulmonary Vein Stenosis: Evidence from Two Case Studies

    No full text
    Pulmonary vein stenosis is a serious condition characterized by restriction or blockage due to fibrotic tissue ingrowth that develops in the pulmonary veins of infants or children. It is often progressive and can lead to severe pulmonary hypertension and death. Efforts to halt or reverse disease progression include surgery and catheter-based balloon dilation and stent implantation. Its cause and mechanism of progression are unknown. In this pilot study, we propose and explore the hypothesis that elevated wall shear stress at discrete pulmonary venous sites triggers stenosis. To assess this theory, we retrospectively analyzed cardiac catheterization, lung scan, and X-ray computed tomography data to estimate wall shear stress in the pulmonary veins at multiple time points during disease progression in two patients. Results are consistent with the existence of a level of elevated wall shear stress above which the disease is progressive and below which progression is halted. The analysis also suggests the possibility of predicting the target lumen size necessary in a given vein to reduce wall shear stress to normal levels and remove the trigger for stenosis progression

    Assessment of the formation of vascular structures following hind limb ischemia.

    No full text
    <p>(A) Vascular density was quantified by the number of CD31 structures per HPF in control, TLR2 KO and TLR4 KO mice two weeks following femoral artery ligation (black bars). Vessel area was also measured (gray bar) (N = 4 per group; *P<0.05 versus control and TLR4 KO). (B) Number of SMA staining vessels per HPF 2 weeks (N = 4 per group; *P = 0.003 vs. control and TLR4 KO).</p

    Assessment of vascular structures in control, TRIF KO and MyD88 KO mice.

    No full text
    <p>(A) Representative photomicrographs demonstrating CD31 positive structures (arrowhead; scale bar = 25 µm). (B) Quantification of vascular density (black bars) and vessel area (gray bars) are shown (N = 4–8 per group; *P<0.001 vs. TRIF KO and control; <sup>¶</sup>P = 0.002 vs. control).</p

    Interplay between TLR4, TLR2, MyD88 and TRIF in mediating inflammation, muscle regeneration and angiogenesis after muscle ischemia.

    No full text
    <p>Interplay between TLR4, TLR2, MyD88 and TRIF in mediating inflammation, muscle regeneration and angiogenesis after muscle ischemia.</p
    corecore