24 research outputs found

    Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States

    Get PDF
    Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration. © 2023 the Author(s)

    Ownership Patterns Drive Multi-Scale Forest Structure Patterns across a Forested Region in Southern Coastal Oregon, USA

    No full text
    Research Highlights: We used airborne lidar to assess the multi-scalar patterns of forest structure across a large (471,000 hectare), multi-owner landscape of the Oregon Coast Range, USA. The results of this study can be used in the development and evaluation of conservation strategies focused on forest management. Background and Objectives: Human management practices reflect policy and economic decisions and shape forest structure through direct management and modification of disturbance regimes. Previous studies have found that land ownership affects forest cover, patch dynamics, structure, and ecosystem function and services. However, prior assessments of forest structure across landscapes and ownerships have been limited by a lack of high-fidelity forest structure measurements across a large spatial extent. We addressed three research questions: (1) What distinct classes of forest structure exist across our study area? (2) How does the distribution and pattern of forest structure vary among types of owners at scales of patches, ownership types, and subregion, and is this independent of property size? and (3) What implications do the fine and sub-regional scale patterns have for landscape configuration goals under recent updates to the Northwest Forest Plan? Materials and Methods: We examined forest structure patterns by identifying six statistically distinct classes of forest structure and then examining their distribution across and within ownership types. We used these structure classes to examine their area within each ownership class, mean patch size, and intermixing at multiple scales. Results and Conclusion: We found that the six different forest structure classes in the study area can be interpreted as two assemblages: production-style forests, principally on private lands, and structurally complex forests, principally on public lands. We found that land ownership objectives resulted in distinct landscape patterns of forest structure as measured by mean structure class patch size and intermixing of different structure class patches. Finally, we found that forest structure differed between public and private lands but differed comparatively little among ownership types within those two broad categories

    Forest Carbon Incentive Programs for Non-Industrial Private Forests in Oregon (USA): Impacts of Program Design on Willingness to Enroll and landscape-scale program outcomes

    Get PDF
    Privately-owned forests in the Pacific Northwest (PNW) are important potential carbon sinks and play a large role in carbon sequestration and storage. Non-industrial private forest (NIPF) owners constitute a substantial portion of overall forest landownership in productive regions of the PNW; however, little is known about their preferences for non-market incentive programs aimed at increased carbon storage and sequestration, specifically by limiting timber harvest, and how those preferences might impact the outcome of forest carbon programs. We simulated landscape-scale outcomes of hypothetical forest carbon incentive programs in western Oregon (USA) by combining empirical models of NIPF owners\u27 participation with spatially explicit forest carbon storage and sequestration data. We surveyed landowners to determine their willingness to enroll in various hypothetical forest management incentive programs that varied in terms of harvest restrictions, contract length, annual payment and incentive payment amounts, and cost-share percentages, as well as the program framing (e.g., carbon versus forest health). We used multinomial logistic regression to model whether landowners might enroll based on program attributes, landowners\u27 attitudes toward climate change and forest management, past and planned future forest harvest activities, and socio-demographics. We found that 36% of respondents stated that they would probably or definitely enroll in at least one of the hypothetical programs they were shown while 21% of respondents refused all programs that they were offered. Our final model of landowner willingness to enroll indicated that higher annual and higher cost-share payments were the strongest positive predictors of whether landowners would enroll vs. not enroll. Landowners\u27 willingness to enroll was not influenced by program framing as either a “forest carbon” or a “forest health”; however, landowner attitudes toward climate change were the next strongest positive predictor of enrollment after annual and cost-share payments. By simulating landowner enrollment in six policy relevant program scenarios, we illustrate that carefully designed forest carbon incentive programs for NIPF owners could have tangible carbon protection benefits (16.25 to 50.31 MMT CO2e cumulative) at relatively low costs per MT CO2e (3.60to3.60 to 7.70). We highlight tradeoffs between maximizing enrollment in forest carbon incentive programs and providing longer term protection of carbon. This research contributes to the literature on the design of potential forest carbon incentive programs and communication about forest carbon management, as well as aims to aid policy makers and program administrators that seek ways to engage private landowners in carbon-oriented forest management

    The unequal vulnerability of communities of color to wildfire.

    No full text
    Globally, environmental disasters impact billions of people and cost trillions of dollars in damage, and their impacts are often felt most acutely by minority and poor communities. Wildfires in the U.S. have similarly outsized impacts on vulnerable communities, though the ethnic and geographic distribution of those communities may be different than for other hazards. Here, we develop a social-ecological approach for characterizing fire vulnerability and apply it to >70,000 census tracts across the United States. Our approach incorporates both the wildfire potential of a landscape and socioeconomic attributes of overlying communities. We find that over 29 million Americans live with significant potential for extreme wildfires, a majority of whom are white and socioeconomically secure. Within this segment, however, are 12 million socially vulnerable Americans for whom a wildfire event could be devastating. Additionally, wildfire vulnerability is spread unequally across race and ethnicity, with census tracts that were majority Black, Hispanic or Native American experiencing ca. 50% greater vulnerability to wildfire compared to other census tracts. Embracing a social-ecological perspective of fire-prone landscapes allows for the identification of areas that are poorly equipped to respond to wildfires

    Potential Greenhouse Gas Reductions from Natural Climate Solutions in Oregon, USA

    Get PDF
    Increasing concentrations of greenhouse gases (GHGs) are causing global climate change and decreasing the stability of the climate system. Long-term solutions to climate change will require reduction in GHG emissions as well as the removal of large quantities of GHGs from the atmosphere. Natural climate solutions (NCS), i.e., changes in land management, ecosystem restoration, and avoided conversion of habitats, have substantial potential to meet global and national greenhouse gas (GHG) reduction targets and contribute to the global drawdown of GHGs. However, the relative role of NCS to contribute to GHG reduction at subnational scales is not well known. We examined the potential for 12 NCS activities on natural and working lands in Oregon, USA to reduce GHG emissions in the context of the state’s climate mitigation goals. We evaluated three alternative scenarios wherein NCS implementation increased across the applicable private or public land base, depending on the activity, and estimated the annual GHG reduction in carbon dioxide equivalents (CO2e) attributable to NCS from 2020 to 2050. We found that NCS within Oregon could contribute annual GHG emission reductions of 2.7 to 8.3 MMT CO2e by 2035 and 2.9 to 9.8 MMT CO2e by 2050. Changes in forest-based activities including deferred timber harvest, riparian reforestation, and replanting after wildfires contributed most to potential GHG reductions (76 to 94% of the overall annual reductions), followed by changes to agricultural management through no-till, cover crops, and nitrogen management (3 to 15% of overall annual reductions). GHG reduction benefits are relatively high per unit area for avoided conversion of forests (125–400 MT CO2e ha-1). However, the existing land use policy in Oregon limits the current geographic extent of active conversion of natural lands and thus, avoided conversions results in modest overall potential GHG reduction benefits (i.e., less than 5% of the overall annual reductions). Tidal wetland restoration, which has high per unit area carbon sequestration benefits (8.8 MT CO2e ha-1 yr-1), also has limited possible geographic extent resulting in low potential (\u3c 1%) of state-level GHG reduction contributions. However, co-benefits such as improved habitat and water quality delivered by restoration NCS pathways are substantial. Ultimately, reducing GHG emissions and increasing carbon sequestration to combat climate change will require actions across multiple sectors. We demonstrate that the adoption of alternative land management practices on working lands and avoided conversion and restoration of native habitats can achieve meaningful state-level GHG reductions

    Influences of climate, fire, grazing, and logging on woody species composition along an elevation gradient in the eastern Cascades, Washington

    No full text
    Across western North America, current ecosystem structure has been determined by historical interactions between climate, fire, livestock grazing, and logging. Climate change could substantially alter species abundance and composition, but the relative weight of the legacy of historical factors and projected future conditions in informing management objectives remains unresolved. We integrated land use histories with broad scale climatic factors to better understand how inland Pacific Northwest ecosystems may develop under projected climates. We measured vegetation structure and age distributions in five vegetation types (shrub steppe to subalpine forest) along an elevation gradient in the eastern Cascades of Washington. We quantitatively assessed compositional changes, and qualitatively summarized the environmental history (climate, fire and fire suppression, grazing, and logging) of each site. Little change was evident in woody species composition at the shrub steppe site. At the shrub steppe/forest ecotone, densities of drought-tolerant Artemisia tripartita and Pinus ponderosa increased. In the dry conifer, montane, and subalpine forest sites, increases in Pseudotsuga menziesii, Abies grandis, and Abies lasiocarpa, respectively, and decreases in Pinus ponderosa, Larix occidentalis, and Pinus contorta, respectively, have shifted species composition from fire and drought-tolerant species to shade-tolerant species. Fire suppression, grazing, and logging explain changes in species composition more clearly than climate variation does, although the relative influence of these factors varies with elevation. Furthermore, some of the observed changes in composition are opposite what we expect would be most suited to projected future climates. Natural resource managers need to recognize that the current state of an ecosystem reflects historical land uses, and that contemporary management actions can have long-term effects on ecosystem structure. Understanding the processes that generated an ecosystem's current structure will lead to more informed management decisions to effectively respond to projected climate changes
    corecore