161 research outputs found
Hypoxia-Inducible Factor-1α Restricts the Anabolic Actions of Parathyroid Hormone
The hypoxia inducible factors (Hifs) are evolutionarily conserved transcriptional factors that control homeostatic responses to low oxygen. In developing bone, Hif-1 generated signals induce angiogenesis necessary for osteoblast specification, but in mature bone, loss of Hif-1 in osteoblasts resulted in a more rapid accumulation of bone. These findings suggested that Hif-1 exerts distinct developmental functions and acts as a negative regulator of bone formation. To investigate the function of Hif-1α in osteoanabolic signaling, we assessed the effect of Hif-1α loss-of-function on bone formation in response to intermittent parathyroid hormone (PTH). Mice lacking Hif-1α in osteoblasts and osteocytes form more bone in response to PTH, likely through a larger increase in osteoblast activity and increased sensitivity to the hormone. Consistent with this effect, exposure of primary mouse osteoblasts to PTH resulted in the rapid induction of Hif-1α protein levels via a post-transcriptional mechanism. The enhanced anabolic response appears to result from the removal of Hif-1α-mediated suppression of β-catenin transcriptional activity. Together, these data indicate that Hif-1α functions in the mature skeleton to restrict osteoanabolic signaling. The availability of pharmacological agents that reduce Hif-1α function suggests the value in further exploration of this pathway to optimize the therapeutic benefits of PTH
Preclinical single photon emission computed tomography of alpha particle-emitting radium-223
Objective: Dose optimization and pharmacokinetic evaluation of α-particle emitting radium-223 dichloride (223RaCl2) by planar γ-camera or single photon emission computed tomography (SPECT) imaging are hampered by the low photon abundance and injected activities. In this study, we demonstrate SPECT of 223Ra using phantoms and small animal in vivo models. Methods: Line phantoms and mice bearing 223Ra were imaged using a dedicated small animal SPECT by detecting the low-energy photon emissions from 223Ra. Localization of the therapeutic agent was verified by whole-body and whole-limb autoradiography and its radiobiological effect confirmed by immunofluorescence. Results: A state-of-the-art commercial small animal SPECT system equipped with a highly sensitive collimator enables collection of sufficient counts for three-dimensional reconstruction at reasonable administered activities and acquisition times. Line sources of 223Ra in both air and in a water scattering phantom gave a line spread function with a full-width-at-half-maximum of 1.45 mm. Early and late-phase imaging of the pharmacokinetics of the radiopharmaceutical were captured. Uptake at sites of active bone remodeling was correlated with DNA damage from the α particle emissions. Conclusions: This work demonstrates the capability to noninvasively define the distribution of 223RaCl2, a recently approved α-particle-emitting radionuclide. This approach allows quantitative assessment of 223Ra distribution and may assist radiation-dose optimization strategies to improve therapeutic response and ultimately to enable personalized treatment planning
Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition
The canonical Wnt signaling pathway is critical for skeletal development and maintenance, but the precise roles of the individual Wnt co-receptors, Lrp5 and Lrp6, that enable Wnt signals to be transmitted in osteoblasts remain controversial. In these studies, we used Cre-loxP recombination, in which Cre-expression is driven by the human osteocalcin promoter, to determine the individual contributions of Lrp5 and Lrp6 in postnatal bone acquisition and osteoblast function. Mice selectively lacking either Lrp5 or Lrp6 in mature osteoblasts were born at the expected Mendelian frequency but demonstrated significant reductions in whole-body bone mineral density. Bone architecture measured by microCT revealed that Lrp6 mutant mice failed to accumulate normal amounts of trabecular bone. By contrast, Lrp5 mutants had normal trabecular bone volume at 8 weeks of age, but with age, these mice also exhibited trabecular bone loss. Both mutants also exhibited significant alterations in cortical bone structure. In vitro differentiation was impaired in both Lrp5 and Lrp6 null osteoblasts as indexed by alkaline phosphatase and Alizarin red staining, but the defect was more pronounced in Lrp6 mutant cells. Mice lacking both Wnt co-receptors developed severe osteopenia similar to that observed previously in mice lacking β-catenin in osteoblasts. Likewise, calvarial cells doubly deficient for Lrp5 and Lrp6 failed to form osteoblasts when cultured in osteogenic media, but instead attained a chondrocyte-like phenotype. These results indicate that expression of both Lrp5 and Lrp6 are required within mature osteoblasts for normal postnatal bone development
A mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition
Publisher Copyright: © 2024 American Society for Clinical Investigation. All rights reserved.Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.Peer reviewe
Discovery of an intermediate-luminosity red transient in M51 and its likely dust-obscured, infrared-variable progenitor
We present the discovery of an optical transient (OT) in Messier 51,
designated M51 OT2019-1 (also ZTF19aadyppr, AT 2019abn, ATLAS19bzl), by the
Zwicky Transient Facility (ZTF). The OT rose over 15 days to an observed
luminosity of (), in the
luminosity gap between novae and typical supernovae (SNe). Spectra during the
outburst show a red continuum, Balmer emission with a velocity width of
km s, Ca II and [Ca II] emission, and absorption features
characteristic of an F-type supergiant. The spectra and multiband light curves
are similar to the so-called "SN impostors" and intermediate-luminosity red
transients (ILRTs). We directly identify the likely progenitor in archival
Spitzer Space Telescope imaging with a m luminosity of
and a color redder than 0.74 mag, similar
to those of the prototype ILRTs SN 2008S and NGC 300 OT2008-1. Intensive
monitoring of M51 with Spitzer further reveals evidence for variability of the
progenitor candidate at [4.5] in the years before the OT. The progenitor is not
detected in pre-outburst Hubble Space Telescope optical and near-IR images. The
optical colors during outburst combined with spectroscopic temperature
constraints imply a higher reddening of mag and higher
intrinsic luminosity of
() near peak than seen in previous ILRT
candidates. Moreover, the extinction estimate is higher on the rise than on the
plateau, suggestive of an extended phase of circumstellar dust destruction.
These results, enabled by the early discovery of M51 OT2019-1 and extensive
pre-outburst archival coverage, offer new clues about the debated origins of
ILRTs and may challenge the hypothesis that they arise from the
electron-capture induced collapse of extreme asymptotic giant branch stars.Comment: 21 pages, 5 figures, published in ApJ
The Early Ultraviolet Light-Curves of Type II Supernovae and the Radii of Their Progenitor Stars
We present a sample of 34 normal SNe II detected with the Zwicky Transient
Facility, with multi-band UV light-curves starting at days after
explosion, as well as X-ray detections and upper limits. We characterize the
early UV-optical colors and provide prescriptions for empirical host-extinction
corrections. We show that the days UV-optical colors and the blackbody
evolution of the sample are consistent with the predictions of spherical phase
shock-cooling (SC), independently of the presence of `flash ionization"
features. We present a framework for fitting SC models which can reproduce the
parameters of a set of multi-group simulations without a significant bias up to
20% in radius and velocity. Observations of about half of the SNe II in the
sample are well-fit by models with breakout radii cm. The other
half are typically more luminous, with observations from day 1 onward that are
better fit by a model with a large cm breakout radius. However,
these fits predict an early rise during the first day that is too slow. We
suggest these large-breakout events are explosions of stars with an inflated
envelope or a confined CSM with a steep density profile, at which breakout
occurs. Using the X-ray data, we derive constraints on the extended
( cm) CSM density independent of spectral modeling, and find most
SNe II progenitors lose a few years before
explosion. This provides independent evidence the CSM around many SNe II
progenitors is confined. We show that the overall observed breakout radius
distribution is skewed to higher radii due to a luminosity bias. We argue that
the of red supergiants (RSG) explode as SNe II with breakout
radii consistent with the observed distribution of field RSG, with a tail
extending to large radii, likely due to the presence of CSM.Comment: Submitted to ApJ. Comments are welcome at [email protected] or
[email protected]
- …