3,268 research outputs found

    Attitude Design for the LADEE Mission

    Get PDF
    The Lunar Atmosphere and Dust Environment Explorer (LADEE) satellite successfully completed its 148-day science investigation in a low-altitude, near-equatorial lunar orbit on April 18, 2014. The LADEE spacecraft was built, managed and operated by NASA's Ames Research Center (ARC). The Mission Operations Center (MOC) was located at Ames and was responsible for activity planning, command sequencing, trajectory and attitude design, orbit determination, and spacecraft operations. The Science Operations Center (SOC) was located at Goddard Space Flight Center and was responsible for science planning, data archiving and distribution. This paper details attitude design and operations support for the LADEE mission. LADEE's attitude design was shaped by a wide range of instrument pointing requirements that necessitated regular excursions from the baseline one revolution per orbit "Ram" attitude. Such attitude excursions were constrained by a number of flight rules levied to protect instruments from the Sun, avoid geometries that would result in simultaneous occlusion of LADEE's two star tracker heads, and maintain the spacecraft within its thermal and power operating limits. To satisfy LADEE's many attitude requirements and constraints, a set of rules and conventions was adopted to manage the complexity of this design challenge and facilitate the automation of ground software that generated pointing commands spanning multiple days of operations at a time. The resulting LADEE Flight Dynamics System (FDS) that was developed used Visual Basic scripts that generated instructions to AGI's Satellite Tool Kit (STK) in order to derive quaternion commands at regular intervals that satisfied LADEE's pointing requirements. These scripts relied heavily on the powerful "align and constrain" capability of STK's attitude module to construct LADEE's attitude profiles and the slews to get there. A description of the scripts and the attitude modeling they embodied is provided. One particular challenge analysts faced was in the design of LADEE maneuver attitudes. A flight rule requiring pre-maneuver verification of in-flight maneuver conditions by ground operators prior to burn execution resulted in the need to accommodate long periods in the maneuver attitude. This in turn complicated efforts to satisfy star tracker interference and communication constraints in lunar orbit. In response to this challenge, a graphical method was developed and used to survey candidate rotation angles about the thrust vector. This survey method is described and an example of its use on a particular LADEE maneuver is discussed. Finally, the software and methodology used to satisfy LADEE's attitude requirements are also discussed in the context of LADEE's overall activity planning effort. In particular, the way in which strategic schedules of instrument and engineering activities were translated into actual attitude profiles at the tactical level, then converted into precise quaternion commands to achieve those pointing goals is explained. In order to reduce the risk of time-consuming re-planning efforts, this process included the generation of long-term projections of constraint violation predictions for individual attitude profiles that could be used to establish keep-out time-frames for particular attitude profiles. The challenges experienced and overall efficacy of both the overall LADEE ground system and the attitude components of the Flight Dynamics System in meeting LADEE's varied pointing requirements are discussed

    Sex ratios at birth vary with environmental harshness but not maternal condition

    Get PDF
    The sex ratio at birth (SRB) may be patterned by maternal condition and/or environmental stressors. However, despite decades of research, empirical results from across the social and biological sciences are equivocal on this topic. Using longitudinal individual-level data from a US population during the interwar period (1918–1939), inclusive of three distinct eras (Spanish Flu, Roaring ‘20 s, and the Great Depression), we evaluate predictions from two theoretical frameworks used to study patterning in SRB – (1) ‘frail males’ and (2) adaptive sex-biased investment theory (Trivers-Willard). The first approach centers on greater male susceptibility to exogenous stressors and argues that offspring survival should be expected to differ between ‘good’ and ‘bad’ times. The second approach contends that mothers themselves play a direct role in manipulating offspring SRB, and that those in better condition should invest more in sons. In-line with ‘frail male’ predictions, we find that boys are less likely to be born during the environmentally challenging times of the Spanish Flu and Great Depression. However, we find no evidence that maternal condition is associated with sex ratios at birth, a result inconsistent with the Trivers-Willard hypothesis

    Unsupervised offline video object segmentation using object enhancement and region merging

    Get PDF
    Content-based representation of video sequences for applications such as MPEG-4 and MPEG-7 coding is an area of growing interest in video processing. One of the key steps to content-based representation is segmenting the video into a meaningful set of objects. Existing methods often accomplish this through the use of color, motion, or edge detection. Other approaches combine several features in an effort to improve on single-feature approaches. Recent work proposes the use of object trajectories to improve the segmentation of objects that have been tracked throughout a video clip. This thesis proposes an unsupervised video object segmentation method that introduces a number of improvements to existing work in the area. The initial segmentation utilizes object color and motion variance to more accurately classify image pixels to their best fit region. Histogram-based merging is then employed to reduce over-segmentation of the first frame. During object tracking, segmentation quality measures based on object color and motion contrast are taken. These measures are then used to enhance video objects through selective pixel re-classification. After object enhancement, cumulative histogram-based merging, occlusion handling, and island detection are used to help group regions into meaningful objects. Objective and subjective tests were performed on a set of standard video test sequences which demonstrate improved accuracy and greater success in identifying the real objects in a video clip compared to two reference methods. Greater success and improved accuracy in identifying video objects is first demonstrated by subjectively examining selected frames from the test sequences. After this, objective results are obtained through the use of a set of measures that aim at evaluating the accuracy of object boundaries and temporal stability through the use of color, motion and histogram

    Direct Iterative Reconstruction of Multiple Basis Material Images in Photon-counting Spectral CT

    Full text link
    In this work, we perform direct material reconstruction from spectral CT data using a model based iterative reconstruction (MBIR) approach. Material concentrations are measured in volume fractions, whose total is constrained by a maximum of unity. A phantom containing a combination of 4 basis materials (water, iodine, gadolinium, calcium) was scanned using a photon-counting detector. Iodine and gadolinium were chosen because of their common use as contrast agents in CT imaging. Scan data was binned into 5 energy (keV) levels. Each energy bin in a calibration scan was reconstructed, allowing the linear attenuation coefficient of each material for every energy to be estimated by a least-squares fit to ground truth in the image domain. The resulting 5×45\times 4 matrix, for 55 energies and 44 materials, is incorporated into the forward model in direct reconstruction of the 44 basis material images with spatial and/or inter-material regularization. In reconstruction from a subsequent low-concentration scan, volume fractions within regions of interest (ROIs) are found to be close to the ground truth. This work is meant to lay the foundation for further work with phantoms including spatially coincident mixtures of contrast materials and/or contrast agents in widely varying concentrations, molecular imaging from animal scans, and eventually clinical applications
    • …
    corecore