10,492 research outputs found
Implications of a transition in the dark energy equation of state for the and tensions
We explore the implications of a rapid appearance of dark energy between the
redshifts () of one and two on the expansion rate and growth of
perturbations. Using both Gaussian process regression and a parameteric model,
we show that this is the preferred solution to the current set of low-redshift
() distance measurements if to within
1\% and the high-redshift expansion history is unchanged from the CDM
inference by the Planck satellite. Dark energy was effectively non-existent
around , but its density is close to the CDM model value today,
with an equation of state greater than at . If sources of
clustering other than matter are negligible, we show that this expansion
history leads to slower growth of perturbations at , compared to
CDM, that is measurable by upcoming surveys and can alleviate the
tension between the Planck CMB temperature and low-redshift probes
of the large-scale structure.Comment: 24 pages, 16 figure
FINANCIAL PROSPECTS, BUSINESS ORGANIZATION, AND MANAGEMENT: FARM BUSINESS CHALLENGES
Farm Management,
Recommended from our members
η3-Allyl carbonyl complexes of group 6 metals: structural aspects, isomerism, dynamic behaviour and reactivity
Transition metal complexes with π-allylic ligands remain an attractive topic in organometallic chemistry, given the numerousreports of a wide variety of synthetic routes, dynamic behaviour and reactivity, structural (including isomerism),spectroscopic and redox properties, and applications in organic synthesis and catalysis. Surprisingly, despite the considerableinterest in the rich and varied chemistry of this family of organometallic compounds, there is no recent review.
This review is focused on π-allylic representatives of low-cost Group-6 metals bearing one or more carbonyl ligand, the coordination sphere being complemented with η5-cyclopentadienyl (Section 2), chelating ligands, including redox-active α-diimines and various complementary diphosphines (Section 3), and novel anionic amidinate or pyrazolate ligands (Section 4). In Section 1, particular attention is paid to rearrangements of the π-allylic ligand, namely exo and endo isomerism, interconversion mechanisms, fluxionality, and agostic interactions. In addition, the application of multinuclear NMR spectroscopy to the elucidation of such isomerism, and the effect of the metal-centre oxidation state on the bonding, dynamic behaviour and reactivity of the π-allylic ligand are described. The detailed mechanistic description of the synthetic routes and dynamic behaviour of selected representatives of α-diimine complexes in Section 2 is followed by a description of the [M(CO)2(η3-allyl-H,R)(α-diimine)]0/+ fragment as a convenient scaffold for diverse monodentate ligands participating in a range of substitution, insertion, intramolecular migration and C–C coupling reactions – frequently involving also the π-allylic ligand, such as allylic alkylation. Special attention is devoted to selected examples of redox and acid-base reactivity of the α-diimine complexes with emphasis on prospects in electrocatalysis. The amidinate (and
related pyrazolate) ligands treated in Section 4 may directly replace the π-allylic ligand in some cyclopentadienyl complexes (Section 2) or the α-diimine ligand in some dicarbonyl π-allylic complexes (Section 3). The brief description of their synthetic routes is complemented by intriguing examples of fluxionality and characteristic reactivity encountered for these unusual four-electron donor ligands
Affinity Chromatography: A Historical Perspective
Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods
Variable Hard X-ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2-10
We present an analysis of the X-ray spectrum and long-term variability of the
nearby dwarf starburst galaxy Henize 2-10. Recent observations suggest that
this galaxy hosts an actively accreting black hole with mass ~10^6 M_sun. The
presence of an AGN in a low-mass starburst galaxy marks a new environment for
active galactic nuclei (AGNs), with implications for the processes by which
"seed" black holes may form in the early Universe. In this paper, we analyze
four epochs of X-ray observations of Henize 2-10, to characterize the long-term
behavior of its hard nuclear emission. We analyze observations with Chandra
from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less
sensitive observation with ASCA from 1997. Based on detailed analysis of the
source and background, we find that the hard (2-10 keV) flux of the putative
AGN has decreased by approximately an order of magnitude between the 2001
Chandra observation and exposures with XMM-Newton in 2004 and 2011. The
observed variability confirms that the emission is due to a single source. It
is unlikely that the variable flux is due to a supernova or ultraluminous X-ray
source, based on the observed long-term behavior of the X-ray and radio
emission, while the observed X-ray variability is consistent with the behavior
of well-studied AGNs.Comment: 7 pages, 4 figures, 2 tables; accepted for publication in Ap
Incorporating 3-D parent nuclide zonation for apatite ^4He/^3He thermochronometry: An example from the Appalachian Mountains
The ability to constrain km-scale exhumation with apatite ^4He/^3He thermochronometry is well established and the technique has been applied to a range of tectonic and geomorphic problems. However, multiple sources of uncertainty in specific crystal characteristics limit the applicability of the method, especially when geologic problems require identifying small perturbations in a cooling path. Here we present new ^4He/^3He thermochronometric data from the Appalachian Mountains, which indicate significant parent nuclide zonation in an apatite crystal. Using LA-ICPMS measurements of U and Th in the same crystal, we design a 3-D model of the crystal to explore the effects of intra-crystal variability in radiation damage accumulation. We describe a numerical approach to solve the 3-D production-diffusion equation. Using our numerical model and a previously determined time temperature path for this part of the Appalachians, we find excellent agreement between predicted and observed ^4He/^3He spectra. Our results confirm this time-temperature path and highlight that for complex U and Th zonation patterns, 3-D numerical models are required to infer an accurate time-temperature history. In addition, our results provide independent and novel evidence for a radiation damage control on diffusivity. The ability to exploit intra-crystal differences in 4He diffusivity (i.e., temperature sensitivity) greatly increases the potential to infer complex thermal histories
- …