373 research outputs found
Insulin Receptor Substrate 2 Expression and Involvement in Neuronal Insulin Resistance in Diabetic Neuropathy
Insulin signaling depends on tyrosine phosphorylation of insulin receptor substrates (IRSs) to mediate downstream effects; however, elevated serine phosphorylation of IRS impairs insulin signaling. Here, we investigated IRS protein expression patterns in dorsal root ganglia (DRG) of mice and whether their signaling was affected by diabetes. Both IRS1 and IRS2 are expressed in DRG; however, IRS2 appears to be the prevalent isoform and is expressed by many DRG neuronal subtypes. Phosphorylation of Ser(731)IRS2 was significantly elevated in DRG neurons from type 1 and type 2 diabetic mice. Additionally, Akt activation and neurite outgrowth in response to insulin were significantly decreased in DRG cultures from diabetic ob/ob mice. These results suggest that DRG neurons express IRS proteins that are altered by diabetes similar to other peripheral tissues, and insulin signaling downstream of the insulin receptor may be impaired in sensory neurons and contribute to the pathogenesis of diabetic neuropathy
Rats bred for low and high running capacity display alterations in peripheral tissues and nerves relevant to neuropathy and pain
IntroductionDiet and activity are recognized as modulators of nervous system disease, including pain. Studies of exercise consistently reveal a benefit on pain. This study focused on female rats to understand differences related to metabolic status and peripheral nerve function in females.MethodsHere, we investigated parameters of peripheral nerve function relevant to pain in rats selectively bred for high (high‐capacity runners; HCR) or low endurance exercise capacity (low‐capacity runners; LCR) resulting in divergent intrinsic aerobic capacities and susceptibility for metabolic conditions.ResultsLCR female rats have reduced mechanical sensitivity, higher intraepidermal nerve fiber density and TrkA‐positive epidermal axons, increased numbers of Langerhans and mast cells in cutaneous tissues, and a higher fat content despite similar overall body weights compared to female HCR rats. Sensory and motor nerve conduction velocities, thermal sensitivity, and mRNA expression of selected genes relevant to peripheral sensation were not different.ConclusionsThese results suggest that aerobic capacity and metabolic status influence sensory sensitivity and aspects of inflammation in peripheral tissues that could lead to poor responses to tissue damage and painful stimuli. The LCR and HCR rats should prove useful as models to assess how the metabolic status impacts pain.These results suggest that aerobic capacity and metabolic status influence sensory sensitivity and aspects of inflammation in peripheral tissues that could lead to poor responses to tissue damage and painful stimuli. The LCR and HCR rats should prove useful as models to assess how the metabolic status impacts pain.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139060/1/brb3780.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139060/2/brb3780_am.pd
Metabolic changes of salicylic acid-elicited Catharanthus roseus cell suspension cultures monitored by NMR-based metabolomics
The effect of salicylic acid (SA) on the metabolic profile of Catharanthus roseus suspension cells throughout a time course (0, 6, 12, 24, 48 and 72 h after treatment) was investigated using NMR spectroscopy and multivariate data analysis. When compared to control cell lines, SA-treated cells showed a high level of sugars (glucose and sucrose) up to 48 h after treatment, followed by a dynamic change in amino acids, phenylpropanoids, and tryptamine. Additionally, one compound—2,5-dihydroxybenzoic-5-O-glucoside—was detected solely in SA-treated cells
GTP avoidance in Tetrahymena thermophila requires tyrosine kinase activity, intracellular calcium, NOS, and guanylyl cyclase
Guanosine 5'-triphosphate (GTP) is a chemorepellent in Tetrahymena thermophila that has been shown to stimulate cell division as well as ciliary reversal. Previous studies have proposed that GTP avoidance is linked to a receptor-mediated, calcium-based depolarization. However, the intracellular mechanisms involved in GTP avoidance have not been previously documented. In this study, we examine the hypothesis that GTP signals through a tyrosine kinase pathway in T. thermophila. Using behavioral assays, enzyme immunosorbent assays, Western blotting, and immunofluorescence, we present data that implicate a tyrosine kinase, phospholipase C, intracellular calcium, nitric oxide synthase (NOS) and guanylyl cyclase in GTP signaling. The tyrosine kinase inhibitor genistein eliminates GTP avoidance in Tetrahymena in behavioral assays. Similarly, pharmacological inhibitors of phospholipase C, NOS, and guanylyl cyclase all eliminated Tetrahymena avoidance to GTP. Immunofluorescence data shows evidence of tyrosine kinase activity in the cilia, suggesting that this enzyme activity could be directly involved in ciliary reversal
Generating inner ear organoids containing putative cochlear hair cells from human pluripotent stem cells
In view of the prevalence of sensorineural hearing defects in an ageing population, the development of protocols to generate cochlear hair cells and their associated sensory neurons as tools to further our understanding of inner ear development are highly desirable. We report herein a robust protocol for the generation of both vestibular and cochlear hair cells from human pluripotent stem cells which represents an advance over currently available methods that have been reported to generate vestibular hair cells only. Generating otic organoids from human pluripotent stem cells using a three-dimensional culture system, we show formation of both types of sensory hair cells bearing stereociliary bundles with active mechano-sensory ion channels. These cells share many morphological characteristics with their in vivo counterparts during embryonic development of the cochlear and vestibular organs and moreover demonstrate electrophysiological activity detected through single-cell patch clamping. Collectively these data represent an advance in our ability to generate cells of an otic lineage and will be useful for building models of the sensory regions of the cochlea and vestibule
The effect of nutrients on pyrrolizidine alkaloids in Senecio plants and their interactions with herbivores and pathogens
The aim of this review is to combine the knowledge of studies on effects of nutrients on pyrrolizidine alkaloids (PAs) in Senecio with those studies of effects of PAs on herbivores and pathogens in order to predict the effects that nutrients may have on herbivores and pathogens via changes in PAs. We discuss whether these predictions match with the outcome of studies where the effect of nutrients on herbivores and insects were measured. PA concentrations in S. jacobaea, S. vulgaris and S. aquaticus were mostly reduced by NPK fertilization, with genotype-specific effects occurring. Plant organs varied in their response to increased fertilization; PA concentrations in flowers remained constant, while shoot and roots were mostly negatively affected. Biomass change is probably largely responsible for the change in concentrations. Nutrients affect both the variety and the levels of PAs in the plant. The reduced PA concentrations after NPK fertilization was expected to benefit herbivores, but no or negative responses from insect herbivores were observed. Apparently other changes in the plant after fertilization are overriding the effect of PAs. Pathogens do seem to benefit from the lower PA concentrations after fertilization; they were more detrimental to fertilized plants than to unfertilized control plants. Future studies should include the effect of each element of nutrients separately and in combinations in order to gain more insight in the effect of specific nutrients on PA content in Senecio plants
SAG101 Forms a Ternary Complex with EDS1 and PAD4 and Is Required for Resistance Signaling against Turnip Crinkle Virus
EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance
Retention of progenitor cell phenotype in otospheres from guinea pig and mouse cochlea
Abstract\ud
\ud
Background\ud
Culturing otospheres from dissociated organ of Corti is an appropriate starting point aiming at the development of cell therapy for hair cell loss. Although guinea pigs have been widely used as an excellent experimental model for studying the biology of the inner ear, the mouse cochlea has been more suitable for yielding otospheres in vitro. The aim of this study was to compare conditions and outcomes of otosphere suspension cultures from dissociated organ of Corti of either mouse or guinea pig at postnatal day three (P3), and to evaluate the guinea pig as a potential cochlea donor for preclinical cell therapy.\ud
\ud
\ud
Methods\ud
Organs of Corti were surgically isolated from P3 guinea pig or mouse cochlea, dissociated and cultivated under non-adherent conditions. Cultures were maintained in serum-free DMEM:F12 medium, supplemented with epidermal growth factor (EGF) plus either basic fibroblast growth factor (bFGF) or transforming growth factor alpha (TGFα). Immunofluorescence assays were conducted for phenotype characterization.\ud
\ud
\ud
Results\ud
The TGFα group presented a number of spheres significantly higher than the bFGF group. Although mouse cultures yielded more cells per sphere than guinea pig cultures, sox2 and nestin distributed similarly in otosphere cells from both organisms. We present evidence that otospheres retain properties of inner ear progenitor cells such as self-renewal, proliferation, and differentiation into hair cells or supporting cells.\ud
\ud
\ud
Conclusions\ud
Dissociated guinea pig cochlea produced otospheres in vitro, expressing sox2 and nestin similarly to mouse otospheres. Our data is supporting evidence for the presence of inner ear progenitor cells in the postnatal guinea pig. However, there is limited viability for these cells in neonatal guinea pig cochlea when compared to the differentiation potential observed for the mouse organ of Corti at the same developmental stage
Defining the Cellular Environment in the Organ of Corti following Extensive Hair Cell Loss: A Basis for Future Sensory Cell Replacement in the Cochlea
Background: Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss. Methodology/Principal Findings: Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca’s, suggesting genetic background influences the rate of re-organisation
Simple Sequence Repeats in the National Longitudinal Study of Adolescent Health: An Ethnically Diverse Resource for Genetic Analysis of Health and Behavior
Simple sequence repeats (SSRs) are one of the earliest available forms of genetic variation available for analysis and have been utilized in studies of neurological, behavioral, and health phenotypes. Although findings from these studies have been suggestive, their interpretation has been complicated by a variety of factors including, among others, limited power due to small sample sizes. The current report details the availability, diversity, and allele and genotype frequencies of six commonly examined SSRs in the ethnically diverse, population-based National Longitudinal Study of Adolescent Health (Add Health). A total of 106,743 genotypes were generated across 15,140 participants that included four microsatellites and two di-nucleotide repeats in three dopamine genes (DAT1, DRD4, DRD5), the serotonin transporter (5HTT), and monoamine oxidase A (MAOA). Allele and genotype frequencies showed a complex pattern and differed significantly between populations. For both di-nucleotide repeats we observed a greater allelic diversity than previously reported. The availability of these six SSRs in a large, ethnically diverse sample with extensive environmental measures assessed longitudinally offers a unique resource for researchers interested in health and behavior
- …