27 research outputs found

    Non-local effects in the mean-field disc dynamo. II. Numerical and asymptotic solutions

    Full text link
    The thin-disc global asymptotics are discussed for axisymmetric mean-field dynamos with vacuum boundary conditions allowing for non-local terms arising from a finite radial component of the mean magnetic field at the disc surface. This leads to an integro-differential operator in the equation for the radial distribution of the mean magnetic field strength, Q(r)Q(r) in the disc plane at a distance rr from its centre; an asymptotic form of its solution at large distances from the dynamo active region is obtained. Numerical solutions of the integro-differential equation confirm that the non-local effects act similarly to an enhanced magnetic diffusion. This leads to a wider radial distribution of the eigensolution and faster propagation of magnetic fronts, compared to solutions with the radial surface field neglected. Another result of non-local effects is a slowly decaying algebraic tail of the eigenfunctions outside the dynamo active region, Q(r)∌r−4Q(r)\sim r^{-4}, which is shown to persist in nonlinear solutions where α\alpha-quenching is included. The non-local nature of the solutions can affect the radial profile of the regular magnetic field in spiral galaxies and accretion discs at large distances from the centre.Comment: Revised version, as accepted; Geophys. Astrophys. Fluid Dyna

    Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

    Get PDF
    Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization

    Small-scale magnetic buoyancy and magnetic pumping effects in a turbulent convection

    Get PDF
    We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by the three kinds of the inhomogeneities, i.e., inhomogeneous turbulence; the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic field cause the small-scale magnetic buoyancy and magnetic pumping effects in the turbulent convection. These phenomena are different from the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects when the mean magnetic field is smaller than the equipartition field. We discuss the small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field. In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the poloidal field.Comment: 13 pages, 4 figure, REVTEX4, Geophysical and Astrophysical Fluid Dynamics, in pres

    Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES-II period

    Get PDF

    The Magnetic Field in IC 342

    No full text

    Hierarchial Galactic Dynamo and Seed Magnetic Field Problem

    No full text

    Magnetic Field Effects in Galactic Disks

    No full text
    corecore