58 research outputs found

    Draft genome sequence of the naphthalene degrader Herbaspirillum sp. strain RV1423

    Get PDF
    Herbaspirillum sp. strain RV1423 was isolated from a site contaminated with alkanes and aromatic compounds and harbors the complete pathway for naphthalene degradation. The new features found in RV1423 increase considerably the versatility and the catabolic potential of a genus of bacteria previously considered mainly to be diazotrophic endophytes to plants

    Draft genome sequence of the naphthalene degrader Herbaspirillum sp. strain RV1423

    Get PDF
    Les élastomères thermoplastiques sont des matériaux relativement nouveaux qui se caractérisent à la fois par une mise en oeuvre rapide analogue à celle des polymères thermoplastiques et par des propriétés intermédiaires entre celles des élastomères vulcanisés et des polymères thermoplastiques plastifiés. On passe en revue de façon succincte les principaux élastomères thermoplastiques commerciaux ou en développement. Pour chacun d'eux, on décrit brièvement la structure, les propriétés, la mise en oeuvre et les applications. Thermoplastic elastomers are relatively new materials that are characterized both by rapid implementation, similar to that of thermoplastic polymers, and by properties intermediate between those of vulcanized elastomers and plasticized thermoplastic polymers. This article makes a succinct review of the leading commercial thermoplastic elastomers or the ones being developed. For each of them, a brief description is given of the structure, properties, implementation and applications

    First draft genome sequence of the Acidovorax caeni sp. nov. type strain R-24608 (DSM 19327)

    Get PDF
    We report the draft genome sequence of the Acidovorax caeni type strain R-24608 that was isolated from activated sludge of an aerobic-anaerobic wastewater treatment plant. The closest strain to Acidovorax caeni strain R-24608 is Acidovorax sp. strain MR-S7 with a 55.4% (amino-acid sequence) open reading frames (ORFs) average similarity

    The impacts of bovine milk, soy beverage, or almond beverage on the growing rat microbiome

    Get PDF
    Background Milk, the first food of mammals, helps to establish a baseline gut microbiota. In humans, milk and milk products are consumed beyond infancy, providing comprehensive nutritional value. Non-dairy beverages, produced from plant, are increasingly popular as alternatives to dairy milk. The nutritive value of some plant-based products continues to be debated, whilst investigations into impacts on the microbiome are rare. The aim of this study was to compare the impact of bovine milk, soy and almond beverages on the rat gut microbiome. We previously showed soy and milk supplemented rats had similar bone density whereas the almond supplemented group had compromised bone health. There is an established link between bone health and the microbiota, leading us to hypothesise that the microbiota of groups supplemented with soy and milk would be somewhat similar, whilst almond supplementation would be different. Methods Three-week-old male Sprague Dawley rats were randomly assigned to five groups (n = 10/group) and fed ad libitum for four weeks. Two control groups were fed either standard diet (AIN-93G food) or AIN-93G amino acids (AA, containing amino acids equivalent to casein but with no intact protein) and with water provided ad libitum. Three treatment groups were fed AIN-93G AA and supplemented with either bovine ultra-heat treatment (UHT) milk or soy or almond UHT beverages as their sole liquid source. At trial end, DNA was extracted from caecum contents, and microbial abundance and diversity assessed using high throughput sequencing of the V3 to V4 variable regions of the 16S ribosomal RNA gene. Results Almost all phyla (91%) differed significantly (FDR < 0.05) in relative abundance according to treatment and there were distinct differences seen in community structure between treatment groups at this level. At family level, forty taxa showed significantly different relative abundance (FDR < 0.05). Bacteroidetes (Bacteroidaceae) and Firmicutes populations (Lactobacillaceae, Clostridiaceae and Peptostreptococcaceae) increased in relative abundance in the AA almond supplemented group. Supplementation with milk resulted in increased abundance of Actinobacteria (Coriobacteriaceae and Bifidobacteriaceae) compared with other groups. Soy supplementation increased abundance of some Firmicutes (Lactobacilliaceae) but not Actinobacteria, as previously reported by others. Conclusion Supplementation with milk or plant-based drinks has broad impacts on the intestinal microbiome of young rats. Changes induced by cow milk were generally in line with previous reports showing increased relative abundance of Bifidobacteriacea, whilst soy and almond beverage did not. Changes induced by soy and almond drink supplementation were in taxa commonly associated with carbohydrate utilisation. This research provides new insight into effects on the microbiome of three commercially available products marketed for similar uses

    Beyond microarrays: Finding key transcription factors controlling signal transduction pathways

    Get PDF
    BACKGROUND: Massive gene expression changes in different cellular states measured by microarrays, in fact, reflect just an "echo" of real molecular processes in the cells. Transcription factors constitute a class of the regulatory molecules that typically require posttranscriptional modifications or ligand binding in order to exert their function. Therefore, such important functional changes of transcription factors are not directly visible in the microarray experiments. RESULTS: We developed a novel approach to find key transcription factors that may explain concerted expression changes of specific components of the signal transduction network. The approach aims at revealing evidence of positive feedback loops in the signal transduction circuits through activation of pathway-specific transcription factors. We demonstrate that promoters of genes encoding components of many known signal transduction pathways are enriched by binding sites of those transcription factors that are endpoints of the considered pathways. Application of the approach to the microarray gene expression data on TNF-alpha stimulated primary human endothelial cells helped to reveal novel key transcription factors potentially involved in the regulation of the signal transduction pathways of the cells. CONCLUSION: We developed a novel computational approach for revealing key transcription factors by knowledge-based analysis of gene expression data with the help of databases on gene regulatory networks (TRANSFAC(® )and TRANSPATH(®)). The corresponding software and databases are available at

    Precariedad, exclusión social y modelo de sociedad: lógicas y efectos subjetivos del sufrimiento social contemporáneo (IV). Innovación docente en Filosofía

    Get PDF
    El PIMCD “Precariedad, exclusión social y modelo de sociedad: lógicas y efectos subjetivos del sufrimiento social contemporáneo (IV). Innovación docente en Filosofía” constituye la cuarta edición de un PIMCD que ha recibido financiación en las últimas convocatorias de PIMCD UCM, de los que se han derivado actividades de formación para estudiantes de Grado, Máster y Doctorado y al menos 3 publicaciones colectivas publicadas por Ediciones Complutense, Siglo XXI y Palgrave McMillan

    Multi-Omic Profiling, Structural Characterization, and Potent Inhibitor Screening of Evasion-Related Proteins of a Parasitic Nematode, <i>Haemonchus contortus</i>, Surviving Vaccine Treatment

    No full text
    The emergence of drug-resistant parasitic nematodes in both humans and livestock calls for development of alternative and cost-effective control strategies. Barbervax® is the only registered vaccine for the economically important ruminant strongylid Haemonchus contortus. In this study, we compared the microbiome, genome-wide diversity, and transcriptome of H. contortus adult male populations that survived vaccination with an experimental vaccine after inoculation in sheep. Our genome-wide SNP analysis revealed 16 putative candidate vaccine evasion genes. However, we did not identify any evidence for changes in microbial community profiling based on the 16S rRNA gene sequencing results of the vaccine-surviving parasite populations. A total of fifty-eight genes were identified as significantly differentially expressed, with six genes being long non-coding (lnc) RNAs and none being putative candidate SNP-associated genes. The genes that highly upregulated in surviving parasites from vaccinated animals were associated with GO terms belonging to predominantly molecular functions and a few biological processes that may have facilitated evasion or potentially lessened the effect of the vaccine. These included five targets: astacin (ASTL), carbonate dehydratase (CA2), phospholipase A2 (PLA2), glutamine synthetase (GLUL), and fatty acid-binding protein (FABP3). Our tertiary structure predictions and modelling analyses were used to perform in silico searches of all published and commercially available inhibitor molecules or substrate analogs with potential broad-spectrum efficacy against nematodes of human and veterinary importance

    AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics.

    Get PDF
    Understanding prokaryotic transformation of recalcitrant pollutants and the in-situ metabolic nets require the integration of massive amounts of biological data. Decades of biochemical studies together with novel next-generation sequencing data have exponentially increased information on aerobic aromatic degradation pathways. However, the majority of protein sequences in public databases have not been experimentally characterized and homology-based methods are still the most routinely used approach to assign protein function, allowing the propagation of misannotations. AromaDeg is a web-based resource targeting aerobic degradation of aromatics that comprises recently updated (September 2013) and manually curated databases constructed based on a phylogenomic approach. Grounded in phylogenetic analyses of protein sequences of key catabolic protein families and of proteins of documented function, AromaDeg allows query and data mining of novel genomic, metagenomic or metatranscriptomic data sets. Essentially, each query sequence that match a given protein family of AromaDeg is associated to a specific cluster of a given phylogenetic tree and further function annotation and/or substrate specificity may be inferred from the neighboring cluster members with experimentally validated function. This allows a detailed characterization of individual protein superfamilies as well as high-throughput functional classifications. Thus, AromaDeg addresses the deficiencies of homology-based protein function prediction, combining phylogenetic tree construction and integration of experimental data to obtain more accurate annotations of new biological data related to aerobic aromatic biodegradation pathways. We pursue in future the expansion of AromaDeg to other enzyme families involved in aromatic degradation and its regular update. Database URL: http://aromadeg.siona.helmholtz-hzi.de

    Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation

    Get PDF
    Acetate and ethanol can be converted to caproic acid by microorganisms through reverse beta-oxidation. There is limited insight into the versatility of chain elongation in view of different starting substrates, including even- and odd-carbon carboxylates and alcohols other than ethanol. Thermodynamic analyses show that most elongation pathways are energetically feasible. Through incubations of microbial communities with different substrate-pair combinations, we established that ethanol and propanol were both highly suitable for chain elongation. As an electron acceptor, acetate, propionate, and butyrate readily elongated with ethanol, whereas an adaptation period was necessary for formate. Isobutyrate and longer-chained fatty acids above butyrate were not elongated. The microbial communities converged, and consistent enrichment of Clostridium spp. was observed, independent of the supplied alcohol or carboxylate, with a strain related to Clostridium kluyveri dominating the enrichments. Community analysis also showed phylotypes related to Bacteroidaceae and Microbacteriaceae families in all tests that are capable of converting the base substrates to useful intermediates. These organisms were mainly enriched with methanol or formate. Our overall conclusion is thus that multiple substrates can be used for chain elongation and that this process is carried out by highly similar organisms for direct chain elongation irrespective of the substrate
    corecore